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Dedication

This book is dedicated to the memory of cherished teachers who
have been unknowingly responsible for its coming into being.

When I began my university studies, I was strongly drawn by math-
ematics. This led me to enroll in an elementary symposium organized
by the Mathematics Institute at the Faculty of Engineering. In one of
the first meetings, José Luis Massera asked me which branch of mathe-
matics I was most interested in. I timidly replied “mathematical logic”,
which was my interest back then, when I was utterly unaware of the
breadth of mathematics. Massera laughed, as he used to, and his words
became forever imprinted on my memory. I will quote them as I re-
member them.

When I am old and senile, I will grow a little beard and
devote myself to mathematical logic.

Such was his categorical and contemptuous regard for the topic. That
is why, now, over half a century later–having returned to my primary
calling–I would like to dedicate this book to the memory of José Luis
Massera, my esteemed teacher. Perhaps he would not have approved
of my attempt at making a formal proposition on dialectics, but I have
no doubt that he would have read it with some curiosity. I am sure
he would have let out a laugh or two, with his characteristic Homeric
laughter.
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My second teacher was Fernando Forteza. I began to make a for-
malization of dialectics towards the end of the 1970s, amidst a military
dictatorship in full swing. I had been removed from my position at
the University and was banned from the Faculty of Engineering, which
meant I did not have access to the Library of the Mathematics Institute
or any bibliography on lattices, which is the natural setting for logic.
I once ran into Forteza and asked him, rather shyly, if I could borrow
Birkhoff ’s [4] book, which could be found at the library. A couple of
days later he brought it to me and I quickly made a copy before return-
ing it. That book was fundamental to the present study.

My third teacher was Mario H. Otero, who took a chance on these
Enquiries –as well as other intellectual adventures–, publishing them in
the journal “Galileo” of the Faculty of Humanities and Sciences, despite
the exotic nature of the subject matter within the field of epistemology.
This book is also a celebration of his memory and intellectual generos-
ity.

4



Contents

Foreword 9

Logic as an image of the universe 11

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 11

The universe of statements . . . . . . . . . . . . . . . . . . 12

Ambivalent statements . . . . . . . . . . . . . . . . . . . . 14

Unit and struggle of opposites . . . . . . . . . . . . . . . . 17

The non-logic of love . . . . . . . . . . . . . . . . . . . . . 19

Becoming . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Argumentation in sciences . . . . . . . . . . . . . . . . . . 28

Synchronic and diachronic opposites . . . . . . . . . . . . . 32

Isomorphisms and Homomorphisms . . . . . . . . . . . . 36

Metaphysics and dialectics . . . . . . . . . . . . . . . . . . 37

Natural dialectics 38

Logic and dialectics . . . . . . . . . . . . . . . . . . . . . . 38

The dialectics of yin–yang . . . . . . . . . . . . . . . . . . 39

The dialectics of Vico and Hegel . . . . . . . . . . . . . . . 49

Materialistic dialectics . . . . . . . . . . . . . . . . . . . . 51

The first law of dialectics . . . . . . . . . . . . . . . . . . . 54

Ionian dialectics . . . . . . . . . . . . . . . . . . . . . . . . 57

The elements in China . . . . . . . . . . . . . . . . . . . . 60

Dialectics in pre-Columbian America . . . . . . . . . . . . 63

Dialectics in quantum mechanics . . . . . . . . . . . . . . . 65

The dialectics of Pythagoras and his heirs . . . . . . . . . . 66

Many-valued logic . . . . . . . . . . . . . . . . . . . . . . 70

5



An Inquiry into Dialectic Logic

An intuitive introduction to dialectics 72
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 72
Logic and lattices . . . . . . . . . . . . . . . . . . . . . . . 73
Lattice operations . . . . . . . . . . . . . . . . . . . . . . . 74
Semantics of logical values . . . . . . . . . . . . . . . . . . 75
The science of logic . . . . . . . . . . . . . . . . . . . . . . 76

The formalization of dialectics 78
Dialectic logic as an image of the universe . . . . . . . . . . 78
Lattices overview . . . . . . . . . . . . . . . . . . . . . . . 79
Some lattices of logical interest . . . . . . . . . . . . . . . . 84
Dialectic lattices . . . . . . . . . . . . . . . . . . . . . . . . 85
Dialectic lattices and automorphisms . . . . . . . . . . . . 92
Cones and intervals . . . . . . . . . . . . . . . . . . . . . . 95

Negation 98
Monotonic and inverse monotonic functions . . . . . . . . 98
Intuitive notions on negation . . . . . . . . . . . . . . . . . 99
The formal properties of negation . . . . . . . . . . . . . . 100
Dialectic opposites . . . . . . . . . . . . . . . . . . . . . . 105
Examples in D3 . . . . . . . . . . . . . . . . . . . . . . . . 105
Unit functions in dialectic lattices . . . . . . . . . . . . . . 108
The group of negations and automorphisms . . . . . . . . . 115
Negations in Dn . . . . . . . . . . . . . . . . . . . . . . . . 119
Negations in 2Dn . . . . . . . . . . . . . . . . . . . . . . . 119
Negations in 3Dn . . . . . . . . . . . . . . . . . . . . . . . 125
Overview of the group of automorphisms and negations . . 127

Penetration of opposites 128
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 128
Overview on dialectic penetration . . . . . . . . . . . . . . 129
General property of dialectic penetrations . . . . . . . . . . 131
Ample penetrations . . . . . . . . . . . . . . . . . . . . . . 133
Ample penetrations in Dn . . . . . . . . . . . . . . . . . . 137
Ample penetrations in 2Dn . . . . . . . . . . . . . . . . . . 137
Ample penetrations in 3Dn and subsequents . . . . . . . . 140

6



Contents

Strict penetrations in 3Dn and subsequents . . . . . . . . . 140

Becoming 148
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 148
Becoming in Dn . . . . . . . . . . . . . . . . . . . . . . . . 151
Becoming in 2Dn . . . . . . . . . . . . . . . . . . . . . . . 152
Becoming in 3Dn . . . . . . . . . . . . . . . . . . . . . . . 153
Heraclitus’ river . . . . . . . . . . . . . . . . . . . . . . . . 153
Synchronic and diachronic opposites . . . . . . . . . . . . . 154

Argumentation 157
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 157
Argumentation . . . . . . . . . . . . . . . . . . . . . . . . 158
Argumentation in a court of law . . . . . . . . . . . . . . . 161
The argumentation function . . . . . . . . . . . . . . . . . 162
The foundation of principles in science . . . . . . . . . . . 165

Implication 169
Introduction to dialectic implication . . . . . . . . . . . . . 169
The formal rules of dialectic implication . . . . . . . . . . . 170
The semantic rules of dialectic implication . . . . . . . . . . 172
Non-contradiction and independence of the rules . . . . . . 173
Implication functions in general . . . . . . . . . . . . . . . 179
Basic implications in rDn . . . . . . . . . . . . . . . . . . . 181
Implications in Dn . . . . . . . . . . . . . . . . . . . . . . 184
Implications in 2Dn . . . . . . . . . . . . . . . . . . . . . . 186
Implications in 3Dn . . . . . . . . . . . . . . . . . . . . . . 189
Implication and the CI property . . . . . . . . . . . . . . . 190

The dialectic of predicates 192
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 192
Classic quantifiers . . . . . . . . . . . . . . . . . . . . . . . 194
Dialectic quantifiers in general . . . . . . . . . . . . . . . . 196
Ample dialectic quantifiers . . . . . . . . . . . . . . . . . . 198
Strict dialectic quantifiers . . . . . . . . . . . . . . . . . . . 202
The semantics of dialectic quantifiers . . . . . . . . . . . . 204

7



An Inquiry into Dialectic Logic

Paradoxes 208
Introduction to logical paradoxes . . . . . . . . . . . . . . 208
The hanging or beheading paradox . . . . . . . . . . . . . . 209
Protagoras’ paradox . . . . . . . . . . . . . . . . . . . . . . 210
Epimenides’ paradox . . . . . . . . . . . . . . . . . . . . . 211
Russell’s paradox . . . . . . . . . . . . . . . . . . . . . . . 216
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Dialectics in science 220
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Introduction to dialectics in the formal sciences . . . . . . . 222
Contradiction in mathematics . . . . . . . . . . . . . . . . 223
The parallel postulate in geometry . . . . . . . . . . . . . . 226
Dialectics in mathematics . . . . . . . . . . . . . . . . . . . 229
Dialectics in information science . . . . . . . . . . . . . . . 233
Introduction to dialectics in the natural sciences . . . . . . . 234
Introduction to relationships between physical theories . . . 235
19th century mechanics . . . . . . . . . . . . . . . . . . . . 236
20th century mechanics . . . . . . . . . . . . . . . . . . . . 240
Statistical mechanics . . . . . . . . . . . . . . . . . . . . . 249
The dialectics of social classes . . . . . . . . . . . . . . . . . 250
The formalism of historical materialism . . . . . . . . . . . 253
Boundary cases . . . . . . . . . . . . . . . . . . . . . . . . 255
Science and dialectics . . . . . . . . . . . . . . . . . . . . . 259

Bibliography 261

List of Tables 268

List of Figures 270

Index 272

8



Foreword

This book is divided into three sections. In the first one, the use of
dialectics is substantiated by means of examples taken from the nat-
ural languages, spontaneous forms of dialectic thought and relevant
historical cases. This section ends with the chapter entitled “Intuitive
introduction”, which contains no mathematical resources nor makes
any formalization. The second section begins in the following chapter,
“Formalization”, and carries on until the second-to-last chapter. This
section makes use of algebraic resources and formalizes the theory. The
final chapter applies dialectics within the realm of formal, experimental
and social sciences. In summary, readers who wish to skip the mathe-
matical formulation may go from the “Intuitive introduction” straight
to the final chapter. If you have any doubts on the meaning of the con-
cepts used, please refer to the analytical index.

The dialectic logic studied in this book is a multi-valued extension
of binary logic. It is a mathematical structure defined within a lattice
containing a group of automorphisms and anti-automorphisms. The
double nature of this formal structure makes it extremely rich in terms
of its properties and potential applications.

These inquiries are the result of a synthesis which attempts to settle
traditional binary logic, a somewhat informal version of Hegel’s dialec-
tic, and the structures of spontaneous human thought which are not
entirely accessible or comprehensible through traditional binary logic.

I believe this fourth revision of the work has gained much in terms
of clarity and with regards to practical applications. An increase in the
speed of computers is responsible for one major difference with the
previous versions: it allows to study functions in a more systematic
manner. However, there is still much work to be done, since more
complex lattices call for greater computation times.

Rather than being merit of my own, Rafael Grompone is to be
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thanked for most of the adjustments: he was patient enough to care-
fully review this book and object, discuss and suggest modifications,
some of which have yet to be added to the present version. Another
major contribution is that of Lucı́a Grompone, who reviewed and cor-
rected the diagrams, proposing a coherent style so the book could have
the best possible presentation. I am very grateful to both of them.
However, this cannot be considered a final version. There are many
aspects which remain unexplored, as well as some obvious issues and
notorious gaps. The following have been omitted from this version:

• slightly modifying the mathematical notation of negations so as
to preserve lattice symmetry with regards to the central values–
see the note in page 120;

• systematically analyzing logical functions in lattices with r > 3;

• expanding the study of dialectic quantifiers, which are barely
outlined in this version;

• completing the dialectic study of the paradoxes cited in the cor-
responding chapter;

• analyzing Battro-Piaget’s formalization on operational logic, see
[2, III, 1].

These will be considered for future versions of this document, as
well as any other observations and amendments as they may be sent to
the email addresses which are available for this purpose.

Montevideo, July of 2017.

In www.grompone.org are published the C programs that allows to study
the dialectical functions for the lattices used in this book.
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Logic as an image of the universe

Introduction

Human knowledge is a giant accumulation of statements. These state-
ments make up collections and groups, and have structures which help
connect them. These connections between statements are logical in na-
ture. The full collection of statements–or any partial set of these–may
be considered as an algebraic structure capable of being analyzed and
characterized.

The universe of statements is a miscellaneous collection which may
belong to any of the possible categories of human thought. For the
science of logic, a logical structure may not only occur within the realm
of mathematics. Anywhere we can acknowledge a certain “coherence”–
that is to say, a certain formal structure–we bear witness to one of the
manifestations of logical thought. Therefore, for example, we must
accept the following:

• the statements made by pre-Socratic Greek thinkers, especially
Heraclitus (-535?, -475?), his contemporaries, or classical Chi-
nese philosophers;

• statements related to quantum mechanics–and other areas of sci-
ence–due to their peculiar “irrationality”;

• spontaneous Aymara statements–and the use of Spanish in some
areas of America–which may lead to exotic logical structures;

• jokes, paradoxes, poetry, as long as we recognize a formal value
in them and not a mere play on words;

• in the same sense, esoteric and astrological statements, as well as
those from the Kabbalah.

The science of logic is concerned with the “structure” of human
thought. For this reason, we must begin by searching for a structure ca-
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pable of handling statements used in a natural and spontaneous man-
ner.

The universe of statements

If we were to make a formal examination, we must say there are dif-
ferent categories of statements. To begin with, we must distinguish
between simple and complex statements. Simple statements look like
this:

Amos Judd loves cold mutton.1

Socrates is mortal.2

We are not very much interested–at least for the time being–in
defining simple statements with much precision. In many cases, this
character depends on the manner in which the statement is analyzed.
For the purposes of the science of logic, this topic is of little importance.

On the other hand, complex statements are formed by means of
simple statements and logical connectives.

Beyond their specificities, all the natural languages possess elements
which allow them to formulate logical statements. In Latin-derived
languages, there are ways to present the negation function as well as
basic functions of two variables of binary logic. These functions are
expressed by means of conjunctions. In some cases, punctuation signs
replace elliptical conjunctions, which is a very widely used literary re-
source, as we will see.

Linguists classify conjunctions according to criteria which do not
always agree with the logic. They call copulative conjunctions those
corresponding to the AND operation (or its negation). An example
would be:

God is dead. Marx is dead. AND I don’t feel so well my-
self.3

1 A fantastic statement by Lewis Carrol which can be found in [11].
2 A classical statement that should never be missing from any work of logic. I do not
know who the author is and so confess from the very first pages of this book.
3 Eugène Ionesco. Wikiquotes.
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In this operation, the logical conjunction AND is at once associa-
tive and commutative and does not present major difficulties. As in
the example provided, most languages allow the use of a comma to ex-
press the operation in a repeated manner. This use of the comma also
extends to other cases.

Disjunctive conjunctions correspond to the logical operation OR.
Some basic examples are:

Freedom OR death.4

By reason OR force.5

The logical disjunction introduces some difficulties. It is also as-
sociative and commutative. The comma is also usually employed to
repeatedly apply the function. In general, in Latin-derived languages,
there is no doubt as to the symmetry of the disjunction operation.6

In the examples of disjunction we can always doubt whether the
speaker is referring to an operation of inclusion or one of exclusion.
Sometimes, when dismissing the potential ambiguity is desired, one
can do so explicitly, by saying:

Freedom OR death, or both.

Distributive conjunctions are referred to as the various conjunc-
tions corresponding to the excluding logical function. Its forms are
quite diverse in the different languages. In general, it is necessary to
clarify the meaning (let us put on hold for a moment the use of “but”):

Freedom OR death, but not both.

Conjunctions expressing the different forms of logical implication
are referred to as conditionals, concessive, inferential, and many other
terms. Perhaps this multiplicity of names and ways of referring to them
point to something that is still unknown to us. Taking a typical math-
ematical statement:
4 Phrase coined by Juan Antonio Lavalleja upon liberating the current territory of
Uruguay from Portuguese power.
5 The motto which appears in the coat of arms of the Republic of Chile.
6 The English language displays an oddity with regards to the disjunction. The form
either . . . or suggests that there is no symmetry in this operation.
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if x implies y then z.

Negations and negative statements present many difficulties. It can
be said, in all fairness, that the science of logic is devoted to resolving
this issue. This is why we will not insist on this matter at this moment.

Without attempting to make an exhaustive list, let us remember the
statements of existence:

Some oysters are silent.7

And universal statements:

All men are mortals.8

For over 25 centuries, there has been a preoccupation with classi-
fying, formalizing and interpreting these statements and logical con-
nectives. There was a huge leap forward in the 19th century, when
George Boole (1815, 1864) discovered the first formal properties of
these structures. In the first decades of the 20th century it was con-
sidered that the entire formalization had been completed. Bertrand
Russell (1872, 1970) proved that, for instance, negation and disjunc-
tion were sufficient to construct all the remaining logical connectives.
He was also eloquent in his thesis in that only two quantifiers related
to each other–existential and universal–were capable of describing ev-
erything that was needed with regards to statements in the natural lan-
guages.

There is good reason to believe, however, that there are logical
structures which escape this fairly simple scenario. Hidden as commas
or other punctuation signs, concealed in logical connectives not eas-
ily identifiable, there may be logical functions which elude the simple
logical universe described by Russell.

Ambivalent statements

Natural languages use ambivalent words extemporaneously. Some ex-
amples may illustrate this curious property. We will begin by an am-

7 Other fantastic statement by Lewis Carrol which can be found in [11].
8 Another classical statement no work of logic should ever do without.
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bivalence which is common to languages of Indo-European origin: sex-
ual intercourse.

In Latin there is the verb “futuere”, and all the derived expressions:
in French, “foutre”, in Catalan, “fotre”, in Italian, “fottere”, in Spanish,
“joder”, and in Portuguese, “foder” The Germanic languages have: in
English, “to fuck”, in German, “ficken”, in Dutch, “fokken”, in Norwe-
gian, “fukka”, in Swedish, “focka”. In almost all cases, the verb is am-
bivalent: sexual intercourse, damage or struggle.

In Spanish, the verb “joder” is clearly ambivalent. On the one side,
it refers to intercourse, something essential to the preservation of the
species and, therefore–as Darwin will explain–a something pleasant.
However, the word also means the exact opposite: to deceive, to hurt.9

Its use reaches the greatest contradiction by means of the reflexive ex-
pression “jódete”.

We must not think that this peculiarity only applies to Spanish.
Other Latin languages also share this ambivalence. In English, the verb
“to fuck” has practically the same usage.10 In Germanic languages, the
ambivalence is almost always verified. It is possible that in some cases
this aspect of the word has become obsolete.

There are other expressions which are also ambivalent. If we take
the Spanish phrase, “de puta madre”11, the expression is used both as a
strong insult and an equally strong praise.

Leaving sexual aspects aside, in American Spanish, words such as
“brutal”, “bestial”12 or “soberbio”,13 which according to the dictionary

9 The Spanish Language Dictionary (DLE) [19] gives it the following meanings: to en-
gage in sexual intercourse, to be irritated or fooled, to sexually possess a woman, to
annoy or bother someone, to destroy, ruin or let something go to waste.
10 The New Oxford American Dictionary awards the following meanings: have sexual
intercourse with (someone), ruin or damage (something). The same happens with the
various associated verbal phrases, including the reflexive version “fuck yourself”.
11 The word “puta” is ambivalent in Spanish. According to the DLE [19]: a derogatory
qualifier, to ponder, to emphasize the absence or shortage of something. In this case,
the meaning is three-fold: negative, positive and neutral.
12 According to the DLE [19]: brutal or irrational, of disproportionate grandeur or
extraordinary.
13 According to the DLE [19]: arrogant or being driven by arrogance; grandiose or
magnificent.
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are negative qualifiers, can also be positive, and it is only the context
which allows to make this distinction. The same happens with the qual-
ifier “arrecho” o “verraco”.14

The French language has a rhetorical form of expression known
as “litote”15 which sets forth a thesis while meaning to say the exact
opposite of the formulated statement.16 An example might be the ex-
pression il n’est pas complètement stupide (he is not completely stupid).
The literal meaning is that the person is sometimes not stupid. In its
rhetorical sense, the phrase means that he “is very smart”.17

The oxymoron18 is directly linked to this rhetorical figure. Some
classical examples are: “Festina lente” (hurry up slowly), from the em-
peror Augustus; “feather of lead, bright smoke, cold fire, sick health”
from Shakespeare (Romeo and Juliet); “una graciosa torpeza” (a gra-
cious clumsiness), from Jorge Luis Borges (The aleph). This sums up
twenty centuries of using this contradicting rhetoric.

Finally, paradoxes are complex statements that contradict them-
selves. This point will be analyzed further in pages to come.

What is the logic behind using ambivalent words–or expressions–
with contradicting meanings?19 Dialectics have an explanation for this:
the law of penetration of opposites (see page 52). Some actions or

14 According to the DLE [19], “arrecho” applies to a person, depending on the region
of America: sexually aroused, angry or furious, brave or spirited, lucky, spectacular
or sensational, strongly vehement, very difficult. The DLE does not include the two
meanings for “verraco” which in the Caribbean refers to something despicable, very
large or bad, but being a qualifier which also expresses admiration.
15 All languages possess statements of this kind, in French they are of everyday use.
16 The word comes from the Greek λιτοτης (litotes, simplicity), but is also a figure of
classical rhetoric in which it is hinted that the meaning is not as simple as it seems. It
is a beautiful example of Greek dialectics.
17 Texts which are not originally in English have been translated from the author’s own
Spanish translations.
18 This word is a Latin neologism from the 5th century, comprised by οξυς (oxys, acute,
smart) and μωρος (moros, fool, stupid). “Oxymoron” is an oxymoron.
19 In languages with a Latin influence there are two words that derive from “contrarius”
and “oppositus”. They are usually close in meaning but also have some differences. The
identity of these two words is a basic notion in dialectics. In German, Engels [21] and
other authors only use “Gegensatz” (contraries). In English, depending on the dialectic
statement being considered, the two words are usually employed.
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qualifiers possess opposite aspects. Sexual intercourse can be an act of
love or hate; the whore is simultaneously despised and desired; insult
or praise are two sides of the same attitude; positive situations (such
as hurrying up) can also be negative. Natural languages make spon-
taneous use of this unity of opposites, an aspect which can be seen
throughout the centuries and across languages.

Unit and struggle of opposites

Adversative conjunctions pose a formidable logical challenge. It is fre-
quent to interpret adversative conjunctions as variations of the logical
function AND. According to this, an expression of the type:

a but b

is usually interpreted as a AND b with the added element that, within
the statement, the presence of b must be taken especially into account. It
is worth noting that this is the reason why there is a certain asymmetry
in the role of the two elements, a and b. In many cases, adversative
conjunctions are usually interpreted in this manner, but their use does
not end with this. We will present some examples to introduce new
situations. Let us consider the following:

Those who love, hate 20

In this case, it is established that love is inseparable from hate, but
there is no doubt that these two statements are: “those who love, [also,
but] hate” and “those who hate, [also, but] love”. The order seems
indifferent although they state the same thing.

The possibility of constructing statements capable of being inter-
preted in two different ways is another use of the conjunction but. In
the following joke, quoted by Sigmund Freud (1856, 1939), it is used
along with another function:

Serenissimus asked a stranger by whose similarity to his
own person he had been struck:

20 The title of a novel by Adolfo Bioy Casares and Silvina Ocampo (1946).
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–Was your mother in the Palace at one time?

And the repartee was:

–No, but my father was. [27]

In this case, the conjunction but has a very special role. This frag-
ment contains two possible interpretations, which are indicated by the
conjunction. It is possible to interpret that the similarity responds to
mere chance, and it is also possible to interpret, against the ruler’s sug-
gestion, that his father–and not his mother–is responsible for the re-
semblance. We understand, and this will be reinforced by other ex-
amples, that the conjunction but expresses a different logical function.
This statement, as are many jokes and word games, is the intellectual
equivalent of Louis A. Necker’s (1786, 1861) cube:21 a double inter-
pretation is present, and we cannot decide which of the two possible
interpretations the speaker is referring to.

A second example by Freud shows yet another use of the conjunc-
tion but:

Frederick the Great heard of a preacher in Silesia who had
the reputation of being in contact with spirits. He sent for
the man and received him with the question

–You can conjure up spirits?

The reply was:

–At your Majesty’s command. But they don’t come. [27]

In this example, the result is also a quip, but one of a different log-
ical nature. Here, instead of two possible interpretations, a contradic-
tion occurs. The reply, in very plain terms, intends to say:

I can conjure up spirits but they do not come.

I can conjure up spirits but I cannot conjure up spirits.

21 It refers to the perspective image of a transparent cube which can be interpreted as
being seen from behind as well as from the front. In a similar way, it is possible to
draw a staircase that can be seen as from above or below. There are many examples of
figures containing double, and even triple, interpretation.
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This second statement is the most precise (but also does away with the
joke). The conjunction but allows us to construct a contradiction which
has the value of a joke. It is also capable of enabling double interpreta-
tion, as in the first example: at the same time, it allows us to say that
spirits can be conjured up unsuccesfully. This example is symmetrical.
It is the same thing as saying “spirits do not come but I can conjure
them up”.

No one expresses this function better than Sister Juana Ines de la
Cruz (1651, 1695) in an exceptional poem:22

En dos partes dividida In two parts divided

tengo el alma con confusión: is my soul in confusion:

una, esclava de la pasión, one, a slave to passion,

y otra, a la razón medida. and the other, tied to reason.

Guerra civil, encendida, Civil war, lit up,

aflige el pecho importuna: intrudingly torments the soul:

quiere vencer cada una, each aspires to triumph,

y entre fortunas varias, and among various fortunes,

morirán ambas contrarias they will both die opposed

pero vencerá ninguna. but none shall prevail.

The poem expresses the relationship between passion and reason as
a unity and struggle of opposites, which is similar to the constructions
of adversative conjunctions in everyday language.

The non-logic of love

Defining love has been a concern for practically all poets. There is
a common element to many of them: describing the state of love as
something contradictory, difficult to express. This idea will appear time
and again throughout the centuries, at least for as long as written texts
have been preserved.

The first to describe this notion was possibly the Ionian Anakreon
(-572?, -485?), in the verse attributed to him:

22 This fragment is a stanza of “Dime vencedor rapaz” (Tell me rapacious conqueror).
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I both love and do not love; and am mad and not mad.23

Although this case may be somewhat ambivalent, the poetry of
Gaius Catullus (-84?, -54) poses no questions as to the contradictory
feelings sparked by love:

Odi et amo. Quare id faciam fortasse requiris?
Nescio, sed fieri sentio et excrucior. [9, Carmen #85]24

Many centuries later, a fragment of the famous poem by Neruda
introduces the same idea:

Ya no la quiero, es cierto, pero tal vez la quiero. 25

It is a question of interpreting meaning from a logical standpoint, since
there is no doubt that, until now, no one has ever been concerned with
the “non-logic” of this text. Also, practically everyone will agree that
the sentence conveys a confusing blend of feelings which–nonetheless–
is easily interpreted in a spontaneous manner. This verse indicates that
it is equally valid to state “I love her” and “I do not love her’.

If we were only to resort to binary logical functions we would be at
a loss. The statement

I do not love her OR I love her

poses no challenge because it is universally valid regardless of the au-
thor’s feelings. It is clear, then, that in order to express doubt, two
opposing feelings coexist. It would be more appropriate to say:

I do not love her AND I love her.

23 This text is cited in many places, but it does not appear in John Addison’s edition,
London, 1735 (Google Books), or in Alexandre Marchard’s, Paris, 1884 (Gutenberg
Library).
24 I hate and love. Why do I do this, perhaps you will ask? I do not know, but I feel it
happens and it tortures me.
25 I no longer love her, that’s certain, but maybe I love her. Verse from poem 20,
Twenty love poems and a song of despair, Pablo Neruda.
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This statement is universally false. This is why the conjunction but
is used, since it allows to establish a material contradiction with a new
meaning. The paradoxical statement appears as something halfway be-
tween the logical functions AND and OR, and for this reason a different
conjunction is used. In a strict sense, in this function, but is at an equal
distance from both. It is not true–as linguists are usually quick to point
out–that but is a modified AND: it is an entirely new logical function.

Francesco Petrarch (1304, 1374) wrote a sonnet–which has been
translated and plagiarized over and over in many languages26–containing
a classical definition of love through the use of pairs of contradicting el-
ements.

The importance of this sonnet resides in its peculiar structure: a
succession of contradicting pairs joined by the conjunction AND. The
passage from a simple contradiction to a set of contradictions joined
by a conjunction is a new structure which is of great importance to
dialectic logic. This justifies including the entire sonnet here. At the
same time, the number of translations–which fail to mention Petrarch–
additionally reaffirms the importance of the new structure discovered
by the poet.27

Pace non trovo, et non ò da far guerra, I find no peace, and all my war is done;

e temo e spero, e ardo e sono un ghiaccio, I fear and hope, I burn, and freeze like ice;

et volo sopra ’l cielo e giaccio in terra, I fly aloft, yet can I not arise;

e nulla stringo e tutto ’l mondo abbraccio. And nought I have, and all the world I seize on.

Tal m’à in pregion, che non m’apre né serra, That locks nor loseth, holdeth me in prison,

né per suo mi riten né scioglie il laccio, And holds me not, yet can I scape no wise,

e non m’ancide Amore, et non mi sferra, Nor letteth me live, nor die, at my devise,

né mi vuol vivo, né mi trae d’impaccio. And yet of death it giveth me occasion.

26 Olivier de Magny (1529, 1561) translated it into French in the sonnet which begins
with: “Je cherche paix, et ne trove que guerre”; Pierre de Ronsard (1524, 1585) has also
imitated him (“J’espère et crains, je me tais et supplie”), Luise Labé (1524, 1566), see
Première Anthologie Vivante de la Poésie du Passé, Paris, 1951. In Portuguese there is
the version by José Bonifácio de Andrada e Silva (1827, 1886), Frei José de Salamanca,
see Os mais belos sonetos que o amor inspirou, Rio de Janeiro, 1965.
27 The Modern version used here is from Thomas Wyatt (1503, 1542)–who introduced
the sonnet in England–and translates it in a sonnet entitled “Description of the Con-
trarious Passions in a Lover”, see The Penguin Book of Sonnets.
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Veggio senza occhi e non ò lingua et grido, Without eye I see; without tongue I plain:

et bramo di perir e chieggio aita, I wish to perish, yet I ask for health;

et ò in odio me stesso, et amo altrui. I love another, and I hate myself;

Pascomi di dolor, piangendo rido, I feed me in sorrow, and laugh in all my pain,

egualmente mi spiace morte e vita: Lo, thus displeaseth me both death and life,

in questo stato son, Donna, per vui. And my delight is causer of this strife.

[74, Le Rime, CXXXIV]

Petrarch–and his imitators–employed pairs of contradicting ideas
joined by the conjunction AND, which establishes the contradiction.
At the same time, the different pairs are joined by commas which re-
place a certain undefined logical function which can be both AND and
OR. In line with the previously analyzed, the logical function expressed
by the conjunction but can also be considered.

It is worth mentioning here a well-known sonnet by Lope de Vega
(1562, 1653), which also attempts to define love. Not known for ever
surprising anyone in its non-logic, the text is admirable in its simplic-
ity:28

Desmayarse, atreverse, estar furioso, To faint, to dare, to be enraged,

áspero, tierno, liberal, esquivo, coarse, tender, liberal, elusive,

alentado, mortal, difunto, vivo, encouraged, mortal, dead, alive,

leal, traidor, cobarde y animoso; loyal, traitor, coward AND brave;

[ . . . ]

esto es amor, quien lo probó lo sabe. this is love, he who has had a taste
of it so knows.

The definition elaborated by Lope is made up of a long list of con-
tradictory elements–without intending to assume anything about the
meaning of “contradictory”–, separated by commas. The author uses
commas because it is not easy to write the conjunction–or conjunctions–

28 A sonnet by Lope de la Vega cited in a multitude of anthologies, it possibly belongs to
a theater play. Translated from a version included in “Clásicos Castellanos”, Ediciones
de “La Lectura”, Madrid, Volume I, Lope de Vega, Sonnet CXXVI.
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which bind the entire set together. Unlike Petrarch, only in one verse
of the sonnet does Lope write the conjunction AND.

Punctuation signs manage to make up very clear pairs of opposing
elements. The authors’ intention is to make up a list of contradictions
that characterize loving passion. In fact, the technique of the paradox
is repeatedly used and the comma–or the AND conjunction–aids in
expressing the manner in which these contradictions come together.
It is interesting to note that, with the exception of a certain possible
asymmetry, Lope’s statements could be written as:

faint ∗ dare

loyal ∗ traitor

coward ∗ brave

and so forth. This notation tries to show that there is a clear link be-
tween the use of a conjunction, represented by ∗, which has been re-
placed by a comma in the sonnet. However, we do not intend to find,
at least for the time being, the conjunction or logical function that is
replaced by the commas which bind the contradictions together. This
problem will be clarified further ahead. For now, we can only accept
that this logical function is feasibly an associative and commutative op-
eration, as called for by the interpretation of the definition attempted
by the sonnet.

The examples shown allow us to assume that there are more logical
structures in the brain than those considered by Russell in mathemat-
ics. This will be our topic of study.

Becoming

Unlike the penetration of opposites–which has no precise expression in
the natural languages–the notion of “becoming” does: the verb to be-
come.29 Bearing this in mind, we can begin to analyze it. Some literary
examples will assist us as we move forward.

29 The verb comes from the Latin devenir, to come, to arrive. The German language
has the verb werden, which is the auxiliary of the future, and also the verb devenir; the
English languages uses “becoming”, which is related to the Dutch bekomen, a Germanic
term.
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Jesus’s preaching as gathered in the Gospels contains many exam-
ples of “becoming” statements. We will start by John the Baptist’s
preaching as he announces the arrival of Jesus:

Every valley shall be filled, and every mountain and hill
shall be brought low; and the crooked shall be made straight,
and the rough ways shall be made smooth. [Lk 3:5]30

This passage contains four “becoming” statements where it is an-
nounced that each of the natural elements will become its opposite.
The beatitudes also contain a logical structure made up of opposites,
although it is somewhat more complex:31

Blessed be ye poor: for yours is the kingdom of God. Blessed are
ye that hunger now: for ye shall be filled. Blessed are ye
that weep now: for ye shall laugh [ . . . ] Woe unto you that
are full! for ye shall hunger. Woe unto you that laugh now!
for ye shall mourn and weep. [Lk 6:20–25]

In this case there are some opposing “becoming” elements:

hunger becomes satiety but satiety becomes hunger

weeping becomes laughter but laughter becomes weeping

Here, each human situation becomes its opposite, and reciprocally:
laughter becomes weeping becomes laughter and so on. This structure
repeats itself in other passages:

And, behold, there are last which shall be first, and there
are first which shall be last. [Lk 13:30 and also Mt 19:30,
Mt 20:16, Mk 10:31]

For whosoever exalteth himself shall be abased; and he
that humbleth himself shall be exalted. [Lk 14:11 and also
Lk 18:14, Mt 20:27, Mt 23:12]

30 All references from the Bible are taken from [3].
31 The Gospel of Luke contains the oldest version of the account. In this way, for ex-
ample, Matthew’s beatitudes do not have the logical precision of Luke.
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In the Romancero del Cid–anonymous Spanish poems from the
11th century–we find Doña Jimena who once again seeks justice from
the king for the Cid killing her father, a story which is recounted in the
poem:32

[ . . . ] al que mi padre mató [ . . . ] the man my father killed

dámelo para casar, give him to me to marry,

que quien tanto mal me hizo for whomever inflicted such deep hurt

sé que algún bien me fará. I know some good will do me at last.

A clear example of becoming through the opposite appears here:

inflicting such deep hurt becomes some good.

In many of his poems, Heinrich Heine (1797, 1856) proposes a
form of dialectic logic, see [38]. The following poem presents a case
of “becoming”:

Es liegt der heisse Sommer Warm summer

Auf deinen Wängelein; dwells upon thy cheeks,

Es liegt der Winter, der kalte, Cold, frosty winter lies

In deinem Herzenchen klein. in thy little heart, fair child.

Das wird sich bei anders, Yet these, I think, as years grow on,

Du Vielgeliebte mein! Will play a different part;

Der Winter wir auf den Wangen, Then, winter on thy cheeks shall be,

Der Sommer in Herzen sein. And summer in thy heart.

[43, Lyrisches Intermezzo, 48]

Heine proposes a double transformation:

summer in cheeks becomes winter in cheeks

winter in heart becomes summer in heart

32 Own translation.
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The becoming of life will invert the face and the heart to their op-
posites. In two passages of his work Tristan und Isolde, Richard Wagner
(1813, 1883) suggests processes related to the becoming of love:

Des Welternwerdens of the becoming of the world

Walterin . . . regulating . . .

in Liebe Wandelnd den Neid you turn envy to love

[95, II, 1]

The verb to become is explicitly used here (werden) to state: envy
becomes love. In the following scene we find this statement made by
Tristan, followed by the same statement by Isolde:

Tristan du you Tristan

ich Isolde I Isolde

nicht mehr Tristan never more Tristan

[95, II, 2]

This case deals with the transfiguration operated by love:

Tristan becomes Isolde Isolde becomes Tristan

The capitalist society, and money in particular, is the object of sev-
eral “becoming” statements. We will begin with the famous poem by
Francisco de Quevedo (1580, 1645) on the power of money (La po-
breza, el dinero [Poverty, money]):33

¿Quién hace al tuerto galán Who can turn into a gallant a one-eyed man

Y prudente al sin consejo? And make a prudent gent out of a dunce?

. . .

¿Quién hace de piedras pan, Who can turn stones to bread

Sin ser el Dios verdadero? And is not the One True God?

El Dinero. Money.

¿Quién la Montaña derriba Who brings together mountains and valleys
33 Own translation.
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Al Valle; la Hermosa al feo? The Pretty Girl and the Ugly Man?

. . .

¿Y quién lo de abajo arriba Who could easily raise up

Vuelve en el mundo ligero? what was once downcast?

El Dinero. Money.

Money is defined by means of a succession of becoming statements
such as: one-eyed man becomes gallant, stones become bread, and
others.

In Das Kapital, Marx also provides a direct example of becoming to
contribute an explanation for the capitalist commercial cycle.

In der Zirkulation W −G −W hat also die Verausgabung
des Geldes nichts mit seinem Rückfluß zu schaffen. In G −
W − G dagegen ist der Rückfluß des Geldes durch die Art
seiner Verausgabung selbst bedingt. Ohne diesen Rückfluß
ist die Operation mißglückt oder der Prozeß unterbrochen
und noch nicht fertig, weil seine zweite Phase, der den Kauf
ergänzende und abschließende Verkauf, fehlt. [ . . . ] Form
dieses Prozesses ist daher G−W −G′, wo G′ = G+ ∆G,
d.h. gleich der ursprünglich vorgeschossenen Geldsumme plus
einem Inkrement.34 [60, I, 4, 1]

By using the notation→ for becoming, as suggested by the text, the
following is expressed:

· · · W → G→W ′ → G′ → · · ·

It is a cycle with no beginning and no end, whose rotation increases
both money, G (Geld), as well as merchandise, W (Ware), in quantity.

34 In the circulationW −G−W , the investment of money has nothing to do with its
return. On the other hand, inG−W −G, the return of money depends on the nature
of the investment. Without return, the operation would fail and the process would be
interrupted since it is lacking its second phase, which is complementary and is its final
state. [ . . . ] The shape of this process is, then, G −W − G′, where G′ = G + ∆G.
That is, it is equal to the originally invested sum plus an increment of money. [63]
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Becoming through the opposite is the stabilizing mechanism of
some complex systems. The structure of “becoming” is a way to re-
solve the contradiction between two tendencies which must coexist,
opposite to one another and dependent upon one another. In nature,
the balance between predators and preys is stable, yet fluctuating: there
are times when the prey population increases, leading to an increase
in predators and so forth. In a capitalist society we can observe an al-
ternation between opposite parties in power: the so-called right wing
parties–which favor companies and businesspeople–and the so-called
left wing parties, which support the social conquests of the working
class. An alternation between popes can be seen in the Roman Catholic
Church: a theologian pope–concerned with doctrine–is succeeded by a
pastor pope, who is more akin to strengthening the faith of his follow-
ing.

Argumentation in sciences

Argumentation is a process of reasoning which does not readily re-
spond to binary logic. Let us consider an emblematic case of argumen-
tation: the courtroom. An accuser offers his or her arguments while
a defender presents theirs. Each one attempts to refute the other, as a
judge or jury must come to a decision. Which argument better adjusts
to the truth? The mere action of posing this question escapes binary
logic.

In a process of argumentation, all the parties hold truthful affirma-
tions. However, the judge needs to make an assessment. Sometimes, he
will employ the concept of “more truthful than”, which exists in human
thought and modal logic but is missing from binary logic.

The same thing happens with the sciences. Scientific theories must
be supported in order to convince the scientific community, with the
occasional dispute between an old, accepted theory, and a new one that
challenges it. The scientific community must then evaluate using the
“more truthful than” criterion.

In order to illustrate the problem using an actual example from
history, we will analyze the argumentation presented by Isaac Newton
(1642, 1727) on universal gravitation–undoubtedly, one of the clearest
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examples of argumentation in science. Newton not only revolution-
ized mathematics, mechanics and optics, but also epistemology. We
will not worry here about the laws of motion, but simply consider his
argumentation on gravitation.

Newton was aware that this was a leap in an entirely new direction
for the scientific methodology supporting gravitation, that he felt com-
pelled to add a note at the end of the third edition of the book to clarify
this point. The famous passage of the Principia “hypothesis non fingo”
(I do not feign a hypothesis) can be found there.

Rationem vero harum gravitatis proprietatum ex phænome-
nis nondum potui deducere, & hypotheses non fingo.35 [68,
III, Scholium Generale]

The introduction to the “System of the World”, book III, presents
a difference between its first (1687) and third edition (1728). In [67,
III] the author begins with a set of 9 hypotheses. The third edition [68,
III] however, opens with 4 methodological rules and 6 experimental phe-
nomena. doubt, an epistemological shift in Newton’s way of thinking,
despite the fact that the actual content is practically the same in the two
versions.36

35 “I have not as yet been able to discover the reason for these properties of gravity
from phenomena, and I do not feign hypotheses.” The translation used here is from
[70], p. 943.
36 For the sake of abbreviation, I will call the hypotheses H, the rules R, and F will
stand for phenomena. H1 is equivalent to R1 and establishes Occam’s principle: do
not multiply the causes beyond necessity. H2 is equivalent to R2 and establishes that
equal effects must obey to equal causes. H3 is equivalent to R2, but in R2, Newton
feels compelled to give a lengthy explanation which is missing from H3. This rule
establishes that the experimental properties of bodies related to quantity are universal,
such as gravity. R4 establishes the methodology of induction, except if cases are found
where does not hold true, which forces to change it. This is a precursor of Popper’s
refutation. H4 establishes that the Solar System is at rest, while this statement has
disappeared from the third edition. H5 is equivalent to F1 and establishes the third
law of Kepler for Jupiter’s satellites. F2 establishes that Saturn’s satellites meet the third
law of Kepler, as discovered by Cassini between 1671 and 1684, unknown at the time of
the first edition. H6 is equivalent to F3 and establishes that the 5 planets orbit around
the Sun. H7 is equivalent to F4 and establishes the third law of Kepler for the 5 planets.
In both cases he presents the figures, but F4 has more information. H8 is equivalent to
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This shift from “hypotheses” to “methodological rules” and “ex-
perimental phenomena” establishes the birth of modern science. It is
not about enunciating axioms–hypotheses, to use the terminology of
the first edition–but to having a basis on actual experiments or obser-
vations. Let us examine these “experimental phenomena”.37

The following are the astronomical observations explicitly men-
tioned by Newton:

• The Copernican description of the Solar System: planets orbiting
around the Sun.

• The first law (K1) of planetary motion by Johannes Kepler (1571,
1630), which establishes that the areas swept by the line that joins
together the “central” and the “moving” body, are equal during
an equal interval of time.38

• The third law of Kepler (K3), which establishes that the period
times of the orbits of any two planets is the ratio of the 3/2th

power of the mean distance from the “central” to the “moving”
body. This law was observed on three occasions: for the entire
Solar System, for Jupiter and for Saturn.

Starting at K1, through theorems [67, 68, I, Theorema i, ii, ii], New-
ton proves that the force which determines the orbits which comply
with this law are forces directed from the “moving” body to the “cen-
tral” body, see [67, 68, III, Theorema i, ii].39 As from K3, through
[67, 68, I, Theorema iv, Corol. vi], he will show that the forces are in
inverse proportion to the square of the distance between the two bod-
ies.40

F5 and establishes the first law of Kepler for the 5 planets. H9 is equivalent to F6 and
establishes the first law of Kepler for the Moon.
37 Euclid[23, I] had already made the distinction between three types of statements:
the 23 definitions, the 5 postulates (axioms) and the 5 common notions (basic rules of
logic).
38 Kepler derived this law for Mars from Tycho Brahe’s (1546, 1601) records, which was
accepted by Newton for the Moon since its motion is practically circular.
39 The geometric simplicity of the demonstration of these theorems is simply astound-
ing. There is no doubt that this was the main idea behind the theory of gravitation.
40 Theorem IV shows that the centripetal forces of circular motion are proportional
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It is clear that in demonstrating the law of inverse proportion to
the square of the distance, Newton’s reasoning used circular motion,
since the eccentricities of the ellipses of the actual orbits are very small.
However, once the Law of Gravitation was established, he laboriously
reconstructed the elliptical and parabolic movements of the Solar Sys-
tem.

But there was one very important element missing from all of this:
the motion of the Moon. He will address this in [67, 68, III, Theorema
iii, iv]. Here, Newton simply verifies that the centripetal acceleration of
the Moon and bodies falling near the surface of the Earth also comply
with the inverse square-law.41

Newton’s argumentation was overwhelming: the uniform circular
motion conformed to K1; the Solar System, Jupiter’s, Saturn’s and the
Earth’s satellites complied with K3. He finished off his argumentation
with a theoretical demonstration of Kepler’s Second Law (K2), which
established that planetary motion is elliptical, with the Sun in one of
the foci. One final confirmation was the reconstruction of a comet
discovered by John Flamsteed (1646, 1719). The Principia banished

to the squares of the arcs described within a unit of time, divided by the radius. In
modern language, the acceleration in a circular motion is α = v2/R. Corollary VI
establishes that if the periods of a circular motion are proportional to the 3/2th power
of the radius and the speeds are inversely proportional to the square root of the radius,
then, the centripetal forces are inversely proportional to the square of the radius. In
modern language, the period of a circular movement is T = 2πR/v, then after T =
k R3/2 it results in v = 2π/k R1/2 and then α = K/R2, where K = (2π/k)2 is a
constant of proportionality.
41 The measurements made by several astronomers show that the distance from the
Moon to the Earth is 60 times the radius of the Earth; its period T is 27 days, 7 hours,
43 minutes, –T = 39,343 minutes– and the Earth’s circumference is c = 2π r =
123.2496 × 106 feet of Paris (these are the figures employed by Newton). There-
fore, the centripetal acceleration of the Moon is α = 4π2×60 r/T 2 = 120π c/T 2 =
120π × 123.2496× 106/(39, 343)2 × 106 = 120π × 123.2496/(39343)2 = 30.0
feet/min2. Then, the “fall” of the Moon towards the Earth in one minute is 30.0 t2/2 =
30.0/2 = 15.0 feet. Newton calculates 15 1/12, that is 15.08. The acceleration on the
Earth’s surface, according to the law of gravitation, would be 60 × 60 times greater,
that is, 30,0 feet/seg2, and from this, the fall in one second would also be 15.0 feet. A
foot of Paris is 326.6 millimeters. Therefore, the acceleration of gravity on the surface
of the Earth, as per Newton’s calculus, is 30.0× 0.3266 ≈ 9.8 m/seg2 which matches
current measurements.
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the old planetary theory proposed by Claudius Ptolemy (100?, 170?).
However, there was no direct experimental evidence on gravitation.

Then, what logical value did universal gravitation have? It was un-
doubtedly a “truthful” statement, since it related to “truthful” affirma-
tions of mathematics and geometry and to experimental observations.
However, to the eyes of the 20th century and our own, there is no doubt
that this was a “temporary truth”, given that the idea of universal grav-
itation was outdone by the notion of a “curved space” as defined in
Albert Einstein’s General Relativity (1879, 1955). Ultimately, no scien-
tific affirmation, no matter how consolidated and accepted it may be,
is an “absolute and final truth”–while it is simply more truthful than
the previous theory, it is surely less so than any other more elaborate
theory which might be developed in the future. We must once again
turn to the notion of “more truthful than”.

In 1798, Henry Cavendish (1731, 1810) completed an experiment
designed by geologist John Michell: the direct measurement of the at-
traction between fixed, 350-pound lead spheres, and 1.6-pound, mo-
bile spheres, see [10]. The measurement was taken using the deviation
of a torsion scale, carefully insulated to avoid problems with tempera-
ture, electricity, magnetism and air currents. Thus, he found the value
of the gravitation constantG = 6.754×10−11 Newton m2/kg2, which
is quite similar to the currently accepted value.42

Synchronic and diachronic opposites

Not all pairs of elements are opposing elements.43 The idea of oppo-
sites applies to two cases that have a different temporal relation, even
if classical authors have never noticed this difference.44 Los contrarios

42 It is interesting to calculate the attraction between these lead spheres. The masses
weight 160 and 0.7 kilos approximately and are placed roughly 20 cm apart. The force
of attraction is G × 160 × 0.7/0.22 ≈ 1.9 × 10−7 Newton, of the order of a small
fraction of a microgram.
43 Mao Zedong (1893, 1976) [59] carries out a detailed analysis of the notion of dialec-
tic opposites.
44 Ferdinand de Saussure (1857, 1913) in his Cours de Linguistique Générale (1906–
1911) [88], was one of the first scholars–of the human sciences–to notice this major
conceptual difference.
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pueden ser

• Two simultaneous and complementary aspects of the same real-
ity, which we will refer to as synchronic opposites.

• Two successive and opposed aspects of the same reality, which
we will refer to as diachronic opposites.

We can illustrate this idea with some simple examples. In the realm
of artistic creation, we are able to identify two roles we do not hesitate
to call opposites: the role of the creators and that of the critics. The
question is then, which type of opposite do creators and critics rep-
resent? In reality, while they may belong to any of the two types, the
two give way to very different situations. The reasonable thing would
be to assume that art critics and creators are synchronic opposites: two
different groups of people who are simultaneous, complementary and
concerned with the same reality. However, they may also constitute di-
achronic opposites: in this case, each critic can also be a creator who
alternatively performs the two activities. But this may lead to the un-
desirable situation of an activity which becomes corrupted.45

It is possible to find a variety of synchronic opposites. The follow-
ing is a brief list:

• For every right consecrated by the law–either explicitly or implicitly–
there is an opposite right which limits its scope, such as, for in-
stance, freedom of expression and defense of honor.

• For classical Socialists, opposed social classes have opposing in-
terests and one cannot exist without the other: a factory owner
cannot exist without workers and vice versa.

45 The mechanism of corruption is simple and very widespread in Latin America. A,
acting as a critic, says that B is an exceptional artist. In turn, B, in his role as critic,
returns the favor by saying that A is also an exceptional artist. If critics and creators
become diachronic opposites, the result is usually the corruption of the arts and critics.
Something similar occurs in science. Publications are accepted or rejected by reviewers
through a peer review process, which poses the same dilemma: the role of the author
and that of the evaluator become mixed up, giving way to a mechanism which is often
perverted.
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• After Freud,46 love and hate are considered inextricable opposites–
one cannot exist without the other.

• Beauty and ugliness are yet another example of inextricable op-
posites. One cannot exist without the other, in permanent unity.47

• Oscar Wilde extends the idea of opposites by stating that every
artistic manifestation partakes in a contradiction of this type: the
opposite of a valid artistic current is also a valid artistic current.48

• The universal and the specific are classical opposites formulated
by Leo Tolstoy (1826, 1910) as inextricable49 and have been ana-
lyzed by philosophers since ancient times.

• In philosophy, materialism and idealism are two opposing, dual
currents. With regards to politics, the followers of Locke (lib-
erals) and Rousseau (social reformists) are usually identified as
opposing and dual currents.

• Quantum mechanics and relativistic mechanics are two oppos-
ing, complementary theories, both simultaneously accepted by
the scientific community to explain different aspects of the uni-
verse.

Diachronic opposites appear in every analysis of the origin and
movement of phenomena.50 What follows is a brief list of classical ex-
amples:

• Which came first, the chicken or the egg? This classic conun-
drum evidences the existence of diachronic opposites. The egg

46 Prior to Freud, there are myriad examples in poetry in which this identity and strug-
gle is established, as was introduced in the previous chapter. The odi et amo of Roman
poet Catullus (–84?, –54?), was one of the first examples of this.
47 The issue of beauty has occupied poets and philosophers, with no straightforward
solution. The difficulty lies in this inextricable contradiction. In Les Fleurs du Mal,
Charles Baudelaire (1821, 1687) was one of the first to display this identity.
48 This idea is also necessary in politics, even if it has not been formally stated or ex-
plicitly accepted. This statement has interesting consequences.
49 A quote–which I have not been able to precisely locate–attributed to Tolstoy, formu-
lates these opposites: speak of your town and you will speak of the world.
50 A lattice of the type rD∞ is applicable in this case, although we will not delve into
the details of this lattice in this study.
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engenders the chicken and the chicken engenders the egg. This
problem is poorly formulated, as Darwin showed in his analysis
of the evolution of the species.

• The evolution of the human hand and brain is another case: one
gives way to the other in a successive and repeated manner.

• Natural selection presents itself as the succession of a mutation
followed by the survival of the fittest. This process acts in a reit-
erated, endless manner. The two previous cases are examples of
this idea.

• As argued by historical materialism, human societies succeed them-
selves by opposing one another.

The fact that the hand and the brain coexist in time does not change
their character: they are diachronic, and not synchronic, opposites.51

Synchronic opposites have no diachronic link: struggling classes are all
outdone by a new society.52

Aristotle was the first philosopher to discover that the only alter-
native to the existence of diachronic opposites was to accept the exis-
tence of an external, static God, who is responsible for motion. Gen-
erally speaking, there are only two ways of understanding motion: like
Aristotle does–God created the egg and the chicken simultaneously (as
synchronic opposites)–, or by the action of diachronic opposites, in the
manner of Darwin, arguing that this process accumulates quantitative
changes which result in a qualitative change with the appearance (or
disappearance) of new species.

Accepting the existence of dialectic opposites which are necessary
for understanding the notion of becoming is a very important method-
ological principle which will be used in numerous occasions. Con-

51 To consider that the hand and the brain are synchronic opposites leads to arguing
for the separation between manual and intellectual work and other notions which may
lead to false interpretations. This example warns of the risks of confusing the two types
of opposites.
52 When the Communist Manifesto [61] states that the unity and struggle of classes
in capitalist society–the bourgeoisie and the proletariat–will be outdone by the
supremacy of the proletariat, it turns synchronic into diachronic opposites and makes
an important mistake which it is not relevant to analyze here.
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versely, not accepting opposites leads to an oversimplification and a
schematization of the studied reality.53 In the studies contained in this
book there will be many examples of opposites which are at the basis of
historical becoming.

Isomorphisms and Homomorphisms

Statements can be made in different languages. One can assume that
all statements worthy of consideration can be translated from one lan-
guage into another: that language should not be an impediment in
expressing knowledge.

The operation of translating a universe of statements in Spanish
into a universe of English counterparts, if everything happens as it
should, is an isomorphism.54 The logical structures are preserved and
everything glides along smoothly. In practice, the situation is not that
simple and encountering difficulties is not rare, especially with regards
to temporal relations. Let us take a look at some examples:

x es enfermo x is sick

x está enfermo x is now sick

x deviene enfermo x become sick

The correspondence between these statements in the different lan-
guages is not always straightforward. The Spanish language allows us
to clearly distinguish between statements, which is infrequent in other
languages. Regardless of this, we can accept that the change from one
language to another is no more than an isomorphism–a perfect corre-
spondence–with no major consequences for the science of logic.

Classical logic consists in associating–or projecting–each statement

53 A classic example can be found in Jesus’ statement: whoever is not with me is against
me. Although there are different wordings for this text, it can be found in the three
gospels: Mt 12:30; Mk 9:40 and Lk 9:50. There are many different levels between being
in favor or against something, when that which is being debated represents synchronic
opposites. To not accept this idea is an oversimplification of reality, and in this case,
becomes the seed for religious intolerance.
54 The word isomorphism–as do homomorphism and lattice–has a precise meaning.
The present and the following chapter informally introduce these notions which will
be defined more precisely moving forward.
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over a structure formed by two values: “true” or “false”. As we acknowl-
edge that the natural language contains more complex structures than
mere binary logic, the structure over which the statements are associ-
ated or projected becomes more complex. This mathematical structure
can be identified by means of a lattice. We will not delve in mathemat-
ical notions in these initial chapters, but rather consider it as a useful
structure or diagram for representing ideas.

The issue of the homomorphism is slightly more important within
the universe of statements. As we have mentioned before–with increas-
ing precision–, a logical structure is the result of a “correspondence”,
a “projection” or an “understanding” of the universe of natural state-
ments over an abstract structure. This operation is a homomorphism
which, due to its characteristics, we must consider as a universal homo-
morphism. We will come back to this subject many times.

Metaphysics and dialectics

The metaphysical interpretation of the universe consists in establishing
a homomorphism between reality and a structure chosen in a more or
less whimsical manner. The planets, the strings of a musical instru-
ment, the cardinal points, the elements, everything is possible. Here, it
is metaphysical thought which prevails, and not the scientific study of
reality.

Logic stems from the idea that this homomorphism must be, in
some way, irreducible, with no new interpretations, final, in a word.

If we assume that all interpretation must be a logical interpretation
of the universe, we must accept that the elementary operations AND
and OR are preserved, which would make the homomorphism lead to a
lattice. Thus, the simple idea of logic is born as we conceive of it today,
as the formal image of the universe.

Logic is, ultimately, the result of a homomorphism that preserves
the structural properties of knowledge.
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Logic and dialectics

An experimental study of human logic reveals an exceptionally ample
panorama. Even leaving developmental “genetic” changes of human
thought or forms which may be typified as “pathological” aside, there
is still a vast field to explore. This field extends from the forms used
by philosophers in the past–the creators of the Upanishads, Lao-Tze,
the pre-Socratics, especially Heraclitus, and others–to the dialectics of
Georg W. F. Hegel (1770, 1831), Friedrich Engels (1820, 1895) and Karl
Marx (1818, 1883) in modern times. Generally speaking, we will refer
to dialectics as the entire formalized and rationalized thought of hu-
man beings.

Logic, from Aristotle to our days, comes to us as something natural.
Cultural tradition and education influence this fact, but, above all, it is
natural because it has been imposed on the human brain by the evolution
of the species.

If we wanted to support the validity of Aristotle’s logic, we could
make four powerful arguments to reinforce its natural character and
universal application in science.

The first argument is historical. The Euclid’s Elements, written 22
centuries ago, shows us that logical structures have not changed, at
least for the last thousands of years. The historical continuity of for-
mal thought, which was lost in classical Egypt, is a first and foremost
argument.

Modern languages are able to express any logical Boolean structure.
This fact has occurred without the intervention of academic scholars. It is
a natural fact and constitutes the second, formidable argument which
has been analyzed in previous sections.

There is still little knowledge on how the human brain works pre-
cisely. However, from what we do know, neuronal connections have been
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found that establish elementary binary logical circuits, which is also a
natural fact. This would be the third argument

The fourth argument is scientific in nature. In history, the astron-
omy of agricultural calendars made widespread use of mathematics.
Thanks to Euclid and other Alexandrian scientists, geometry became a
branch of deductive mathematics. With Galileo and Newton, physics
became a mathematical science. After Lavoisier, chemistry suffered the
same fate. In the present century, thanks to molecular genetics, biology
is also following in the footsteps of formalization. This process shows
us that the fundamental tool for analyzing matter is logic, which is an
astounding argument in itself.

In order to study dialectic logic, we must walk a similar path. We
need to look for dialectics whenever we find an area which cannot be
analyzed in traditional logical terms–look for it in the cracks of binary
logical thought. For this reason, the sources of dialectics can be traced
back to those of traditional logic.

In this chapter we will show that dialectics is a natural activity of
human thought. If this is so, dialectics must then be applicable to the
argument of the evolution of the species, and must have equally influ-
enced our brain circuitry. Thus, both the human and the animal brain
must be capable of dialectic activity that is useful for the individual’s
rapport with nature, as is its analytical capacity. Therefore, dialectic
logic must be hidden among historical thought, linguistic structures
and science.

The search for dialectics then becomes the search for non-logic, fail-
ures and cracks in the apparently monolithic proposal of traditional
logic.

The dialectics of yin–yang

In traditional Chinese philosophy (but without making reference to
any specific author) we can frequently find the classification of all the
elements in the universe–from foodstuff to human attitudes–divided
into two categories. The words yin and yang designate the final objec-
tive of the structural homomorphism of traditional Chinese thought:

[ . . . ] les notions secondes de yin et de yang deviennent des
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entités scolastiques que la spéculation utilise pour ordonner
les faits. Le yin et le yang cessent d’être des principes con-
crets ; pourtant l’orientation dualiste qu’ils ont donnée à la
pensée est un fait acquis. Ni le yin ni le yang ne deviendront
par eux-mêmes des réalités religieuses, mais un parti pris de
classification bipartite continuera à dominer le monde des
choses sacrées : l’âme restera double [ . . . ]55 [30]

The dialectics of Lao-Tze are very simple and are based on the bi-
nary organization of the opposites, yin and yang, of the Chinese philo-
sophical tradition.56 From the beginning, we read:

[ . . . ] So it is that existence and non-existence give birth
the one to the other; that difficulty and ease produce the
one the other; that length and shortness fashion out the
one the figure of the other; that height and lowness arise
from the contrast of the one with the other; that the mu-
sical notes and tones become harmonious through the re-
lation of one with another [ . . . ] [53, II]

Not much speculation is needed in order to see here the “unity and
struggle of opposites” which would be used by Hegel, Marx and Engels
centuries later.

A reader who is familiar with Chinese logic and thought will per-
haps hesitate to accept that these ideas can be considered logical values
and not “metaphysical entities” regarding which there is nothing to ex-
plain. This doubt will appear more than once in the upcoming sections,
but we will delay its analysis until we have all the necessary elements.

There is no one better to illustrate the two logical values than Arnold
J. Toynbee (1889, 1975), since the notions of yin and yang are the
main pillars in his analysis of historical movement. In the following

55 [ . . . ] the secondary notions of yin and yang turn into scholastic entities that specu-
lation uses to bring order to facts. Yin and yang cease to be concrete principles, but the
dualistic orientation they have given to thought is a consummated fact. Neither yin
nor yang will become religious entities, but the bipartite classification will continue to
rule the world of the sacred: the soul will remain double [ . . . ].
56 In chapter 42, Lao-Tze makes indirect mention of the opposite principles yin and
yang. However, Zhuangzi repeatedly and explicitly mentions them.
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selected fragments of his entire works–a compendium of Somervell’s
abridgment–we find:

This alternating rhythm of static and dynamic, of move-
ment and pause and movement [ . . . ] the sages of the
Sinic Society described these alternations in terms of Yin
and Yang [ . . . ] In every case the story opens with a per-
fect state of Yin. [ . . . ] When Yin is thus complete, it is
ready to pass over into Yang. [ . . . ] History duly reveals to
us in the phenomena of disintegration a movement than
runs through war to peace; through Yang to Yin; [ . . . ] The
work of the Spirit of the Earth [ . . . ] manifest itself in the
geneses and growths and breakdowns and disintegration
of human societies [ . . . ] we can hear the beat of an el-
emental rhythm whose variations we have learn to know
as challenge-and-response, withdrawal-and-return, rout-
and-rally, apparentation-and-affiliation, schism-and-palin-
genesia. This elemental rhythm is the alternating beat or
Yin and Yang [ . . . ] the movement that this rhythm beats
out is neither the fluctuation of an indecisive battle nor
the cycle of a treadmill. The perpetual turning of a wheel
is not a vain repetition if, at each revolution, it is carrying
the the vehicle that much nearer to its goal; [ . . . ] On this
showing the music that the rhythm of Yin and Yang beats
out is the song of creation [ . . . ] If we listen well we shall
perceive that, when the two notes collide, they produce not
a discord but a harmony. Creation would not be creative
if it not swallow up all things in itself, including its own
opposite. [93]57

For Toynbee, yin and yang are not only a metaphor but represent
organized thought. Throughout the volumes of A Study of History [92]
he will resort to these notions over and over again–as a Chinese scholar
would–in order to interpret the movement of history. In the fragments

57 This quote has been assembled using fragments from [II, iv, 2], [II, v, 1], [V, xvii, 2]
and [V, xxii].

41



An Inquiry into Dialectic Logic

cited here we can find the unmistakable mark of yin-yang dialectics
explaining movement and containing the idea of opposites, of turning
around oneself, of progressing with each turn.

We will see Toynbee’s logic in more detail. Toynbee states–and the
context always confirms–that each historical proposition is either yin
or yang. This is due to the fact that each historical moment can be clas-
sified as either dynamic or static. For Toynbee, there are states in society
and therefore, these can be transferred to statements on history. This is
a delicate point in our study. Let us consider a historical statement. Ac-
cording to Toynbee, this statement will be valid within a certain context
and in either a yin or yang period, depending on the case. Historical
truths do not appear as universal truths, but as valid truths only within
one historical period. The yin statement is succeeded by the yang state-
ment and vice versa. The behavior of reality forces the behavior of the
logic used in its study.

The transformation of yin and yang between themselves, the so-
called alternating beat or song of creation is none other than a logical
function that materialists have dubbed negation. Negation appears as
the mechanism of movement and as a basic process in the course of
history. This is also a close point of contact with materialist dialectics’
notion of becoming. The idea is expressed–by using the symbol→ to
indicate becoming–as:

· · · → yin→ yang → yin→ yang → · · ·

The most simple, direct and most stimulating way to interpret the
yin-yang dialectics was introduced by Oscar Wilde (1854, 1900) in an
essay on art:

For in art there is no such thing as a universal truth. A
truth in art is that whose contradictory is also true. [96]

It is difficult to find so many logical ideas and with such content, in so
concise a manner. Of course, this statement offers only a glimpse of
Wilde’s wit, but we will attempt to see much more. Let us assume that
the statement can be taken in its strict literal sense. Then, there are at
least three types of logical values at play:
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• universal truths, openly mentioned;

• (universal) falsehoods, by opposition;

• truths in Art, openly mentioned.58

This passage conveys that there is an associated concept of negation
binding the groups of logical values. Figure 1 offers a double diagram
which interprets these facts.

Figure 1: Yin-yang dialectics lattice.

In the diagram (a lattice in its mathematical sense), Wilde’s new
logical values are referred to as yin and yang. These names–which we
will use temporarily and later abandon–are taken from traditional Chi-
nese philosophy and their choice is justified in what follows.59 The no-
tion of negation introduced by Wilde, and the operation of negation
according to Toynbee–the “song of creation”–, respectively assigning 1
and 0 to true and false, can be expressed as:

N = (0 1)(yin yang)

58 In an epigram, Wilde suggests the antagonism between realistic and romantic lit-
erature: The nineteenth century dislike of realism is the rage of Caliban seeing his own
face in a glass. The nineteenth century dislike of romanticism is the rage of Caliban not
seeing his own face in a glass. There is nothing clearer than the statement of this con-
tradiction. Today, we might add many other literary contradictory genres to these two:
socialist realism, magical realism, historical literature, ucrony, Ergodic literature and
others that I leave out or have not appeared yet.
59 This is a well-known lattice which matches the 2nd order Boolean lattice designated
as B2 –in the notation proposed in this study– or lattice D2, which will be defined
further ahead.
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where here I use–as in the rest of the book–the usual notation of substi-
tution in group theory.60 This means that the negation N transforms
0 ito 1 and reciprocally, yin into yang, and reciprocally.

Wilde’s original statement acquires great logical precision in this
context and cannot be considered just a witty phrase. Aside from the
universal truths and falsehoods which apply to, for instance, mathe-
matics, science or technique, statements on art suffer a different fate.
With the exception of statements which can be trivially true or false, all
the other statements have a different logical value. Wilde’s cited state-
ment can be precisely reformulated as:

For in art, every non-trivial statement possesses yin or yang
logical value. The negation of every truth in art is an equally
valid statement.

Based on the previous, we understand that yin and yang logical val-
ues are values which indicate truthfulness and not falsehood, although
this truth can be partial or limited. Since this is the first example of
a statement which fails to use traditional logical values, it is appropri-
ate to delve on this a bit more. As an example, let us consider the two
statements:

• art is a reflection of reality,

• art creates a new reality.

Most people will agree with the following statements:

• These statements are–in some way–opposed.

• These statements are not–in any way–universally true or univer-
sally false; in any case, establishing their logical value is not a
simple thing to do.

• The first statement has a materialistic tone, while the second has
an idealistic tone.

Conversely, getting consensus on the following statements is unlikely:

60 This notation is described further ahead, see page 106.
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• The first statement is yin and the second is yang.

• The first statement is markedly “masculine” while the second is
markedly “feminine’.

• The first statement is markedly “static” while the second is markedly
“dynamic”.

• None of the two statements has some truth, they must both be
considered equally false.

• The opposite of the preceding statements.

The response to these possibilities will be analyzed after obtaining
further input from yin-yang dialectics. These considerations show that
the human brain is able to work with logical values other than “true” or
“false” and that these concepts are applicable to the universe and have
real interest. We will use plenty of examples of yin-yang dialectics with
the purpose of establishing this idea more firmly.

Wilde’s clever remarks, Chinese scholastic thought, or Toynbee’s
study of history are not the only historical examples of yin-yang dialec-
tics. Freud’s sexual theory is yet another extremely interesting example
of this logical structure:

Sadism and masochism occupy a special position among
the perversions, since the contrast between activity and
passivity which lies behind them is among the universal
characteristics of sexual life [ . . . ] its active and passive
forms are habitually found to occur together in the same
individual [ . . . ] We find, then, that certain among the im-
pulses to perversion occur regularly as pairs of opposites;
and this, taken in conjunction with material which will be
brought forward later, has a high theoretical significance
[ . . . ] Whenever we find in the unconscious an instinct of
this sort which is capable of being paired off with an op-
posite one, this second instinct will regularly be found in
operation as well. Every active perversion is thus accom-
panied by its passive counterpart [ . . . ] [26]
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Pairs of opposites, per Freud’s words, quickly lead to logical values
for making statements on human behavior. It is possible to distinguish
four different logical values:61

• universally valid statements,

• valid statements for the unconscious,,

• valid statements for the conscious mind,

• false statements.

These four values, combined with the condition of pairs of opposites,
lead to yin-yang dialectics. Following this line of thought, negation
plays a crucial role. The process by which a statement of the conscious
mind is transferred to the unconscious is a negation. The operation
which performs the opposite change is also a negation. The first process
is linked to the “genesis of neurosis”; the second, with “therapy”. As is
well known, the work of the therapist–according to Freud–consists in
turning the truths of the unconscious into truths of the conscious mind.
In our logical language, the operation at hand is also a negation. It is
even eloquent to state that “the negation of the conscious attitudes is
the basis of neurosis”, while “therapy consists in the negation of the
unconscious content”.62

In the cases we have presented, yin-yang dialectics appear sponta-
neously. There are no attempts by the cited authors, not even a hint of
suspicion that we are in presence of a new mechanism of reasoning. In
all cases, this new way of thinking presents itself as dialectics and not
as Boolean logic, despite the fact that they are formally equal.63 How
they handle contradiction and negation shows as much. But above all,
there is an even more powerful reason to know that we are not in pres-
ence of Boolean logic as derived from logical binary combinations. The

61 Strictly speaking, Freud’s subsequent analysis led him to consider that the uncon-
scious presented two struggling entities: the Super-ego and the Id. There is an outline
of Hegel’s dialectics at play here, even if it was not considered so by the author.
62 It is to be expected that this manner of presenting old results does not inaugurate a
new school of psychoanalysis.
63 This statement is very delicate and is clarified with what follows. In reality, the yin-
yang dialectics is homomorphous with binary logic.
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conversion between B2 and B can be done through the mechanism of
introducing or eliminating fictitious variables. In none of these cases is
this procedure suggested. We cannot say that there is a hidden binary
variable allowing us to separate contradictory truths in art, history or
the unconscious. The introduction of fictitious variables would be a
way to “save face”, in the scholastic manner, or of creating a “conven-
tional” logic, as Henri Poincaré would have put it.

In hopes of complementing the above, two quotes by the classics of
dialectic materialism are of interest, as they are directly linked to yin-
yang dialectics. We will begin with the–imprecise64– statement formu-
lated by Engels on one of the laws of dialectics:

Alle Naturvorgänge sind doppelseitig [ . . . ] [21, Artikel,
Grundformen der Bewegung]65

If we believe this statement is general in nature and that D2, this
statement translates the results we have found and speaks of “two-
sided” symmetry.

The second quote belongs to Lenin–Vladimir Ilich Ulianov–(1870,
1924), and touches on an interesting point. Due to the nature of the
quote itself, it may occur that readers who are familiar with historical
materialism may feel a bit disoriented, but throughout the course of
this study, the interpretation will increase in precision. Lenin says:

[ . . . ] one must not fail to see [ . . . ] the struggle of parties
in philosophy, a struggle which in the last analysis reflects
the tendencies and ideology of the antagonistic classes in
modern society [ . . . ] [as the struggle between] material-
ism and idealism. [55]

This way to study philosophy resembles yin-yang dialectics. Here,
we can say that any philosophical thesis is not a universal truth but has
one of two logical values: materialism or idealism. To use Wilde’s ter-
minology, the opposite of a valid philosophical statement is also a valid

64 We will come back to this quote further ahead.
65 All of the processes of nature are two-sided. [21, Articles, Foundations of move-
ment]
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philosophical statement. One is idealist in nature and the opposite is
materialistic in nature. Within the realm of dialectic thought, it is pos-
sible to understand this duality and contemplate it from a more general
standpoint.

We can now return to these yin and yang logical values. According
to Chinese thought, Toynbee’s interpretation of history has the follow-
ing connotations:

yin = the static, the passive, the femenine,

yang = the dynamic, the active, the masculine.

However, there is good reason to not accept these identifications at face
value. Firstly, since there is total symmetry in the D2 lattice, this col-
lides with the possibility of actually distinguishing yin from yang val-
ues. Secondly, it is rather meaningless to try to qualify logical values
if not for their formal characteristics. Thirdly, it is not long before we
encounter trouble. Let us consider Freud’s case as an example: not only
can we find the static and the dynamic, but the conscious and the uncon-
scious, and it is not possible to identify ourselves with one or the other
value. For these reasons, we cannot accept that there is an internal and
unchanging meaning of the values in this dialectic. Conversely, we ac-
cept that these values, from a formal point of view, are indistinguishable.

If we accept that there is no meaning in trying to endow the yin and
yang values with absolute meaning, we can go through the main ideas
behind this logic. Two negations are present in this lattice:

N1 = (0 1) N2 = (0 1)(yin yang)

This indicates that by means of a negation 0 it is possible to operate
a transformation into 1 and reciprocally, and it also indicates that yin
becomes yang, and the latter becomes yin once again. Each list between
brackets indicates a closed cycle. If some element is missing, it means
that it is transformed in itself by the operation.

At this point in the analysis, we use the notion of negation sponta-
neously, with no greater critical analysis. We will analyze this important
subject in more depth further ahead.
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The first negation, N1, does not affect the yin and yang values, it
only exchanges the endmost values of the lattice. The second negation,
N2, matches the usual negation in B2. The main difference between the
B2 Boolean logic in its traditional interpretation and D2 is the existence
of two negations instead of a single one. The two diagrams are identical.

From the point of view of its applications, statements are divided
into two main types: universal statements (true or false) and dialectic
statements. Mathematical or logical statements, which are pure formal
values, belong to the first type in all the contexts analyzed. Statements
on art, history, psychological behavior or philosophy belong to the sec-
ond type, as per the examples analyzed. In the final chapter we will
see that dialectic values also exist in the natural sciences. Negation op-
erations have a different meaning depending on the field of knowledge
being considered, but a negation is always associated with a mechanism
of change or action.

The reason for going through this rudimentary form of dialectics
further lies in that it allows us to clarify many of the ideas presented in
this study. But far from exhausting the subject, this section has only
just begun to analyze the problem of the foundations of dialectics.

The dialectics of Vico and Hegel

The notion of dialectics has also been introduced in the social sciences.
We will begin by studying one of the heralds of this topic.

Giambattista Vico (1668, 1744) is the author of a lengthy essay on
human history from 1725, La scienza nuova [94], where he presents an
argument regarding the existence of historical laws and the cyclical in-
terpretation of history: teoria dei corsi e dei ricorsi storici (theory of his-
torical advances and reversals). Human history comprises the cyclical
repetition of three states: l’età degli dei (the age of the gods), l’età degli
eroi (the age of heroes), l’età degli uomini (the age of men). In the first
age, society is theological in nature. In the second, aristocratic; in the
third, it is a society of equals. There is no doubt that, for Vico, three
historical principles–a “new science”, such as he named his work–are
clearly established:

• history has laws, just like science;
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• the becoming of history is cyclical in nature;

• it comprises three stages.

In this, we cannot miss the beginnings of dialectic materialism which
will be later developed by Hegel.66

Hegel’s dialectics are the first example of non-binary logic to be
stated as such. Given that it is the most important case of dialectics,
this section will only introduce the topic. The entire work revolves
around this dialectic and its generalizations, so that we will return over
and over to the issue of its interpretation.

Hegel was the first logician to propose the need for three additional
logical values, aside fromtrue y false. These three logical values were
originally presented by Hegel as instances of knowledge. Subsequently,
the German dialectic materialists–Marx y Engels, ver [21, 22, 62]– ex-
panded the scope to include laws that described instances in the move-
ment of history. These are, as is well known:67

thesis = the starting point

antithesis = negation of the previous

66 There are other proposals on this matter. In [14] Auguste Comte (1798, 1857) estab-
lished three stages to the development of philosophy: d’abord la méthode théologique,
ensuite la méthode métaphysique, et enfin la méthode positive (first the theological
method, then the metaphysical method and finally the positive method). In [66] Lewis
H. Morgan (1876, 1950) defined 10 stages in the evolution of human society.
67 In a strict sense, traditional Chinese philosophy had already warned of the existence
of three values. This is expressly manifest in how yin-yang is used with regards to
food. All foodstuffs are classified as either yin or yang. However, it was clear that it
was necessary to add a third category for neutral elements, those which were neither
one nor the other. The clearest example can be given with tea types: green tea is sim-
ply made up of dry leaves, black tea is made from fermented leaves, and a third kind
of tea, blue or oolong tea, is partially fermented and partially dry. This idea extended
to all types of foodstuffs. It is interesting to note that some classical Chinese scholars
observed an absence within the yin-yang duo, which is why it is not infrequent to find
the yin-yang-dao triad. This is undoubtedly one of the clearest previews of Hegelian
logic. Traditional Indian philosophy also discovered an incipient form of these ternary
dialectics. The Brahma, Shiva and Vishnu triad expresses a triple aspect of the dy-
namics of the universe: creation, destruction and conservation. This triad structure did
not reach the level of abstraction of Chinese or Western thought, but it exuberantly
expresses this triple notion.
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synthesis = negation of the previous and point of arrival

Figure 2: D3 lattice of Hegelian logic.

Figure 2 presents the diagram corresponding to Hegel’s dialectics.

Materialistic dialectics

Friedrich Engels was often preoccupied with the materialistic interpre-
tation of Hegel’s laws. The reality of the universe demands that, aside
from studying matter itself, its movement be studied from a scientific
standpoint. If we were to assume, as we have until today, that binary
logic (or Aristotelian or classical logic, as we will many times refer to
it) is a reflection of the general laws of matter, dialectic logic then cor-
responds to the general laws of the movement of matter.

Es ist also die Geschichte der Natur wie der menschlichen
Gesellschaft, aus der die Gesetze der Dialektik abstrahiert
werden. Sie sind eben nichts andres als die allgemeinsten
Gesetze dieser beiden Phasen der geschichtlichen Entwick-
lung sowie des Denkens selbst. Und zwar reduzieren sie sich
der Hauptsache nach auf drei: das Gesetz des Umschlagens
von Quantität in Qualität und umgekehrt; das Gesetz von
der Durchdringung der Gegensätze; das Gesetz von der Nega-
tion der Negation. Alle drei sind von Hegel in seiner ideal-
istischen Weise als bloße Denkgesetze entwickelt [ . . . ] Der
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Fehler liegt darin, daß diese Gesetze als Denkgesetze der Natur
und Geschichte aufoktroyiert, nicht aus ihnen abgeleitet wer-
den. [21, Artikel, Dialektik]68

Sadly, Engels’ text only directly analyzes the first law of transforma-
tion of quantity into quality. This law establishes that the accumulation
of quantity is at the root of change. It is not a formal, but a material
law, and for this reason, this work will only indirectly make reference
to it. The following section analyzes this point.

The second law, the law of penetration of opposites, establishes the
following:

Alle Naturvorgänge sind doppelseitig, beruhen auf dem Verhält-
nis von mindestens zwei wirkenden Teilen, auf Aktion und
Reaktion. [21, Artikel, Grundformen der Bewegung]69

That is all. When we analyze reality, it leads to two aspects which are
presented as different, opposed, contrary: the two poles between which
movement unfolds. The search for these opposites is not a simple task
and cannot be taken lightly.

The third law of dialectics–undoubtedly the richest, formally speak-
ing–establishes that the interplay of opposites continuously takes us
back to situations we have already experienced, but in an enriched, en-
hanced manner. Movement has three consecutive phases: the starting
point, the negation of the starting point and the return to the starting
point; negation of the negation. The third law of dialectics regulates
the cause of movement. Its “becoming” statement is as follows:

thesis→ antithesis→ synthesis

68 The laws of dialectics derive, therefore, from the history of nature and the history of
human society. These laws are not, in fact, anything else than the most general laws of
these two phases of historical development and of thought itself. And they are reduced,
fundamentally, to three: the law of transformation of quantity into quality and vice
versa, the law of penetration of opposites, and the law of negation of the negation. The
three laws have been developed by Hegel–in his idealistic manner–as simple laws of
thought [ . . . ] The error lies in that, as laws of thought, they are imposed upon nature
and history, instead of being drawn from these. [21, Articles, Dialectics]
69 All the processes of nature are two-sided, since they rely on the relationship be-
tween at least two interacting parties, action and reaction. [21, Articles, Foundations
of movement]
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This statement does not appear directly in Engels’ exposition, which
is an unfinished draft [21], but it is used, for instance, in Das Kapital
[60] and also by Hegel [42].

If we consider the diagram in Figure 2, we can analyze the Hegelian
negation. It is clear that, by definition, we can introduce this same
statement through the expression:

N = (0 1)(thesis antithesis synthesis)

Which results in the following expressions:

N thesis = antithesis N antithesis = synthesis

And, maybe not so clearly, in the conditions:

N synthesis = thesis N N thesis = synthesis

In the non-formal expositions of dialectics it is not clear that the
negation of the synthesis is a new thesis. Somehow, it is usual to believe
that the logical value synthesis matches that of thesis. If this were the
case, dialectics would become yin-yang dialectics, which is utterly false.
For the first time we find a result which, when precisely stated, acquires
an unexpected feature. This situation will appear many other times.

It is important to analyze the problem of negation. In Hegelian
logic, negation is grade 6, while in yin-yang logic it is grade 2. For
instance, this difference makes the double negation of the thesis non-
trivial, unlike what happens in the D2 yin-yang logic:

N N yin = yin N N yang = yang

Conversely, the triple negation in D3 is verified with: N N N thesis =
thesis.

As in the case of yin-yang, logical values are questioned in the He-
gelian case. To a large extent, it is difficult to accept, at least at first,
that the classical terminology would make reference to logical values
and not a different type of entity. In the imprecise formulations of
dialectics is it usually considered that thesis, antithesis, etc., are states in
a dynamic process. Something equal to the case of yin-yang dialectics
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occurs: it is the material properties which generate logic, and hence
the confusion. In all, the problem stems from the fact that logic is a
reflection, an abstraction of the material properties of the universe. This
is the reason for the confusion.

There is yet another issue worthy of note which may cause some
initial surprise. As in the yin-yang diagram, the three elements can-
not be distinguished from one another in Hegel’s. This makes a thesis
practically undistinguishable from an antithesis or a synthesis. In an
abstract sense, a statement does not have one of these values assigned
by its content. The three values are equally applicable. This means that
any statement can either be a starting point or a point of arrival, both a
thesis and an antithesis–the differences stem only from their reciprocal
relationships..

Ultimately, Toynbee’s theoretical idea of history differs from that
of historical materialism in only one aspect: whereas the first occurs
within the dialectic logic of two elements, the second takes place within
the dialectics of three elements. This is, of course, quite a reduced way
of stating abysmal differences, but it is good to point out that, in ab-
stract, the difference is numerical.

We will come back to this further ahead. In the meantime, we will
introduce some more elements related to the interpretation of the log-
ical values of dialectics.

The first law of dialectics

Engels’ text on the first law of dialectics is clear and offers no difficulties
in its understanding:

Gesetz vom Umschlagen von Quantität in Qualität und um-
gekehrt. Dies können wir für unsern Zweck dahin ausdrücken,
daß in der Natur, in einer für jeden Einzelfall genau festste-
henden Weise, qualitative Änderungen nur stattfinden können
durch quantitativen Zusatz oder quantitative Entziehung von
Materie oder Bewegung [ . . . ] [21, Artikel, Dialektik]70

70 Law of transformation of quantity into quality and inversely. For our purposes we
can express this law by saying that, in nature, and in a clearly established manner for
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This law regulates the “leaps” in the process of becoming. It very
clearly establishes that every change always obeys to a quantitative ac-
cumulation of an actual, measurable and observable entity. This accu-
mulation leads to a “leap”, a change in quality. At the same time, after
the change, a–possibly different–process of accumulation begins once
again, and so on.

In everyday language this idea is expressed in several ways. For
example, we say:

• the straw that broke the camel’s back

• the pitcher goes so often to the well that it is broken at last

In science there are several examples of the application of this law.
One of the first examples was formulated by the famous alchemist Para-
celsus with regards to poisons, and by extension, remedies. It consti-
tutes one of the bases of pharmacology:

Alle Dinge sind Gift, und nichts ohne Gift; allein die Dosis
macht, daß ein Dinge kein Gift ist.71

Without question, remedies and poisons are two opposing ideas.
However, according to this statement, it is only the amount which ac-
tually prompts the change.

Henri Poincaré (1854, 1912) was the first to discover an example
that constituted a precise leap in quality for mathematics. The move-
ment of the two particles gravitating between each other had already
been resolved by Newton. However, it was Poincaré who discovered
that, for three or more particles, the problem was of great mathemati-
cal complexity. This example gave way to new problems and new study
methods for dynamic systems, see [81].

Physics has several examples of the application of this law, but let
us consider one of the most straightforward: statistical mechanics. As

each specific case, qualitative changes can only be produced through the quantitative
addition or subtraction of matter or movement [ . . . ] [21, Articles, Dialectics]
71 All things are poison and nothing is without poison; only the dose makes something
not poison.
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an example, we will take a quote from theoretical physicist Lev Lan-
dau (1908, 1968) and Evgeny Lifchitz (1915, 1985) in the early days of
statistical mechanics:

Ainsi, quoique le mouvement d’un système mécanique ayant
un grand nombre de degrés de liberté soit soumis aux mêmes
lois mécaniques que le mouvement d’un système ayant un
petit nombre de particules, la présence même de ce gran nom-
bre de degrés de liberté donne naissance à des lois qualitative-
ment nouvelles.72 [52, I, 1]

The behavior of a system formed by a number of equal elements de-
pends on the number of elements. Let us assume that we haveN num-
ber of elements. If N is small, the system will simply be the sum of its
parts and its global behavior will be able to be analyzed and explained
through the behavior of each of its parts. But if we were to increase the
number N , we would reach a point where the system could no longer
be explained through its constituent parts. It will have acquired new
properties by the mere fact of exceeding a boundary of quantity. The
study of these systems gave way to a new branch of physics: statistical
mechanics.

Darwin’s evolution of the species is based on the accumulation of
small favorable differences which end up creating a new species. This
happens, for example, due to a change in the environment or due to
migration and adaptation to a new environment.

In the social sciences, quantity also determines quality. We will
consider the numberN of human beings which are the object of study.
For example (using arbitrary limits), if N < 6, it is studied by psy-
chology, if 6 ≤ n ≤ 50000 it is the object of study of sociology or
anthropology, and if N is much larger than these numbers, it is the
object of history. Of course, the proposed limits are conventional and
only exemplify a problem similar to statistical mechanics.

In economics, John Maynard Keynes (1883, 1946) argued that in
times of crisis, the behavior of individuals is one of saving, but that

72 Although a system with a large number of degrees of freedom is subject to the same
laws of movement as a system with a small number of particles, the presence of this
great number gives way to qualitatively new laws.
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the behavior of the State should be one of investment. In this case, it
is clear that there is a change in quality by an increase in the affected
social group. This is sometimes jokingly referred to as “saving money
builds poverty”, as opposed to the usual statement which conveys the
opposite.

Problems leading to this law of dialectics also appear in philosophy.
Perhaps the best example is one attributed to Bertrand Russell which
intends to shed light on the weakness of mere experimental observation
and empirical laws. The example is as follows:73

It concerns a turkey who noted on his first morning at the
turkey farm that he was fed a 9 am. After this experience
had been repeated daily for several weeks the turkey felt
safe in drawing the conclusion “I am always fed at 9 am”.
Alas, this conclusion was shown to be false in no uncertain
manner when, on Christmas eve, instead of been fed, the
turkey’s throat was cut. [13, IV]

The example is witty, but being an empiricist is not the same as
being a dialectician. The turkey’s analysis is incomplete. A more de-
tailed observation would have shown him that, aside from being fed ev-
ery day, he systematically gained weight. A dialectic turkey would have
thought that “something is going on, I’m gaining weight, this can’t go
on indefinitely like this, something is bound to happen, I don’t know
what or when, but something new will happen”. This example and its
two interpretations show the difference between a simple and a dialec-
tic analysis.

Ionian dialectics

In the 6th century BC, in Ionia, a major concept for Western thought
was born: the idea of the elements. In its traditional form, matter was
formed by four elements: fire, earth, air and water. Among the frag-
ments preserved from Empedocles we find:

73 This idea is outlined in [87, VI].
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Hear first the four roots of all things: shining Zeus, life–
bringing Hera, Aidoneus and Nestis [ . . . ] [20, Diels #6]

At one time it grew together to be one only out of many,
at another it parted asunder so as to be many instead of
one; Fire and Water and Earth and the mighty height of
Air; [ . . . ] [20, Diels #17]

For all of these –sun, earth, sky, and sea– are at one with all
their parts that are cast far and wide from them in mortal
things. [20, Diels #22]

For they prevail in turn as the circle comes round, and pass
into one another, and grow great in their appointed turn.
[20, Diels #26]

It is usual to interpret these in a literal sense and make the Ionian
materialists appear to have said that the entire universe is made up of
these four entities. However, a more interesting interpretation is pos-
sible. The last fragment by Empedocles opens a door, and Heraclitus
offers his interesting perspective:

Fire lives in the death of earth, air in the death of fire, wa-
ter in the death of air, and earth in the death of water.
[45, Diels #34]

The idea of living in the death of (something), of an evidently di-
alectic nature, can be found in other fragments by Heraclitus which
have survived. This statement has a circular becoming structure:

· · · → earth→ fire→ air→ water→ earth→ · · ·

The idea of becoming is present in several fragments by Heraclitus:

They do not step into the same rivers. It is other and still
other waters that are flowing. [45, Diels #20]

You cannot step twice into the same river, for other waters
and yet others go ever flowing on. They go forward and
back again. [45, Diels #21]

58



Natural dialectics

Into the same rivers we step and do not step. We exist and
we do not exist. [45, Diels #110]

Cool things become warm, the warm grows cool, the moist
dries, the parched becomes moist. [45, Diels #22]

Immortals become mortals, mortals become immortals;
they live in each other’s death and die in each other’s life.
[45, Diels #66]

In the circumference of the circle the beginning and the
end are common. [45, Diels #109]

If we interpret the idea of rotation of the elements as a negation,
these may be considered in diagram form, as shown in Figure 3.

Figure 3: D4 lattice of the elements in Ionia.

The endmost values in the diagram can be interpreted in terms of
the elements, which correspond to the void and the quintessence or
ether. A negation is defined on this lattice. Due to its similarity to
the dialectic cases we have already found, the negation is:

N = (nothing all)(earth fire air water)

once again employing the notation of substitutions. We then have
N earth = fire, N fire = air and so on.

So far we might think there is more fantasy to this than reality.
However, subsequent medieval scholastics added other four basic no-
tions to the four traditional elements: moist, cold, dry and hot. It is
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well-known that logical relations such as the following have been es-
tablished:

water = moist AND cold

earth = cold AND dry

fire = dry AND hot

air = hot AND moist

These relations lead to the diagram we will refer to as 2D4, which
is presented in Figure 4. It is interesting to note that the new logical
relations match the rotation of the elements proposed by Heraclitus.

Figure 4: 2D4 lattice of the medieval elements.

The elements in China

Traditional Chinese thought understands the elements in a manner dif-
ferent from that of the West:

Les Éléments étant énumérés dans l’ordre de la succession des
Saisons qu’ils symbolisent, la théorie veut que cet ordre soit
celui d’une succession régulière en forme de cycle. D’après
cette théorie, dite de la production réciproque des éléments, le
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Bois engendre le Feu, le Feu engendre la Terre [ . . . ] l’Eau en-
gendre le Bois. Une troisième disposition oppose les Éléments
[ . . . ] La théorie correspondante est celle d’après laquelle les
éléments triomphent les uns des autres dans l’ordre inverse à
celui de l’énumération : le Métal triomphe du Bois , le Bois
de l’Eau [ . . . ] la Terre du Métal. [30]74

Figure 5: D5 lattice containing the Chinese elements.

The five Chinese elements, which clearly differ from the Western
elements, are related by two manners of turning, two negations, as is
the appropriate way to put it in a dialectic conception. The first nega-
tion is associated with genesis, the second to destruction. As we can
see, generally speaking, these ideas extend Heraclitus’ thought. We can
interpret this theory as a D5, Figure 5, in which two different negations
are considered, genesis G and destruction D:

G = (nothing all)(wood fire earth metal water)

D = (nothing all)(metal wood water fire earth)

74 The elements are numbered in the order of succession of the Seasons they symbolize.
The theory attempts to support that this order is that of a regular succession in the
manner of a cycle. According to this theory, the theory of the reciprocal production
of the elements, Wood engenders Fire, Fire engenders Earth [ . . . ] Water engenders
Wood. A third disposition opposes this [ . . . ] The corresponding theory is that in
which the elements win, the ones over the others [ . . . ] Metal wins over Wood, Wood
wins over Water [ . . . ] Earth wins over Metal.
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These two transformations give way to different “rotations” in the lat-
tice and also admit a becoming interpretation, as in the previous cases.
This is a refined discovery we will further ahead have an opportunity
to come back to.

Daoist thought tried to reconcile the binary idea of yin and yang
with the five traditional elements. Zhuangzi–one of the most impor-
tant Daoist masters, see [97, 98, 99, 100]–links Daoist thought to the
traditional idea of the yin-yang duality, something suggested by Lao
Tze yet not explicitly mentioned:

When the state of Yin was perfect, all was cold and se-
vere; when the state of Yang was perfect, all was turbulent
and agitated. The coldness and severity came forth from
Heaven; the turbulence and agitation issued from Earth.
The two states communicating together, a harmony en-
sued and things were produced. Someone regulated and
controlled this, but no one has seen his form. Decay and
growth; fullness and emptiness; darkness and light; the
changes of the sun and the transformations of the moon:–
these are brought about from day to day; but no one sees
the process of production. Life has its origin from which
it springs, and death has its place from which it returns.
Beginning and ending go on in mutual contrariety with-
out any determinable commencement, and no one knows
how either comes to an end. [97, XXI, 4]

We see here a complex statement in which yin and yang interpen-
etrate and undergo a circular motion which generates everything and
causes everything. Daoist thought, then, had to reconcile the elements
with this causality. With five elements, it is enough to accept that the
process of synthesis has only partial stages. The elements’ genesis cycle
turns now, with the dialectic vision, into:

metal → water → wood → fire → earth

new yin → full yin → new yang → full yang → synthesis

This expanded form of dialectics is one of the pinnacles of Chinese
thought, aside from preceding Hegel in over two thousand years.
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The major conclusion and question that this section poses–as well
as the two previous–, has shifted from interpreting the diagrams to a
more general problem regarding the meaning of logic and its connec-
tion with the material reality of the universe.

Dialectics in pre-Columbian America

In pre-Columbian America we find traces of an incipient dialectic
thought. We do not have much information because only the Mayans
had devised an elaborate writing system. Direct oral transmission was
also rare since conquerors, chroniclers and settlers were not interested
in becoming acquainted with the natives’ way of thinking. In spite of
this, it can be detected at least twice: in the Anasazi in North America
and the Aymara in South America.

The idea of the universe among the Anasazi is based on the exis-
tence of a cosmic correspondence, see [40], in which there is a link
between the spatial directions, colors, totemic animals and other natu-
ral phenomena: the trees, the seasons and the “elements”. Table 2, see
[7], shows the specific case of the Zuni.75 Undoubtedly, the existence
of this cosmic correspondence–which can also be found between the
Chinese and the Mongolian, for example–evidences a high degree of
abstract philosophical thought.

Table 2: Cosmic correspondence among the Zuni.

direction color totem season “element”

North yellow lion winter wind

West blue bear spring water

South red badger summer fire

East white wolf fall frost

Zenith all colors eagle

Nadir black mole

75 Among the Tewa, the correspondences are somewhat different. Among the Hopi
there are also correspondences and it is possible that all the Anasazi had them as well.
The Aztecs had a similar correspondence, but only in relation to the four directions,
which have many elements in common with Table 2. This is only natural since there is
a close connection between the different peoples.

63



An Inquiry into Dialectic Logic

The idea of negation or becoming is not described. Something wor-
thy of note is that six “elements” are involved, which is somewhat more
complex than among the Chinese or the Greek..

The most surprising case of natural logic is, without question, the
case of the Aymara. We owe this major discovery to Iván Guzmán de
Rojas [39], which deserves further consideration. From the first studies
that were made of the language, their unique use of suffixes drew atten-
tion. Ludovico Bertonio called it the “machinery of particles”. How-
ever, the many aspects of this linguistic apparatus were not studied in
depth, especially with regards to its logic.

If we assume that logical thought must be expressed through lan-
guage, one of the most important results to be derived from linguistics
is the logical structure of spontaneous thought. We have already in-
sisted on this fact. In the case of the Aymara language, the result is
surprising.

Using powerful arguments, the cited study shows that Bertonio’s
“machinery of particles” expresses a logic that matches Lukasiewicz’s
modal logic. Furthermore, the Aymara people, with the aim of ensur-
ing ongoing communications with the conqueror, adapted the Spanish
language so it could express the different necessary logical values. We
will analyze some cases to show this.

There are two modes of the statement that contain a different log-
ical meaning. These modes are expressed by means of suffixes in Ay-
mara or, in Spanish, by means of special idiomatic forms. One form of
the statement, which expresses that x is true, is:

x.pi = x pues

By contrast, with this other type of statement:

x.ki = x nomás

the idea that there exists the possibility of x, but not the certainty, is
expressed.

In many regions of Spanish-speaking America there is a difference
between “ahora” and “ahorita”–or the more emphatic “ahorita nomás”.
“Ahora” is affirmative; it conveys a certainty, a stated truth, whereas
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“ahorita” is only a possibility. Perhaps the diminutive is the way in
which the peculiar Amerindian logic can translate into Spanish that
which is explicit in Aymara.

According to the author, the miscommunication between conquerors
and conquered originates in these examples. Lukasiewicz’s entire modal
logic is also found here. The different logical paths of the Aymara
language are visited throughout the work, and a surprising natural
dialectics–unknown until today–are elaborated with regards to the han-
dling of opposites and specificities of the negation function. This leads
to acquiring the conviction that this natural logic is not an extension of
classical Greek logic but a different approach to the knowledge of the
universe. The successive references to the Aymara logic reinforce this
assertion..

In [39] we find an insistence that the Aymara logic has an algebraic
ring structure and no importance is given to its character as a lattice. In
contrast, this work insists on its nature as a lattice and the partial order
is identified as the essential property of dialectics.

Dialectics in quantum mechanics

In this section we will analyze von Neumann and Birkhoff ’s quantum
logics. The need to introduce a new logic to interpret quantum me-
chanics arises from the formulation of propositions regarding the elec-
tron’s spin. The behavior of the spin is unique and can be consulted
in the bibliography, see [48, 49] for more details. In summary, this be-
havior can be expressed by the diagram which appears in Figure 6. Spin
X+ is used to designate an electron with the spin precisely defined and
directed towards the positive X-values. Analogously, spin X- is defined
when directed towards the negative X-values and the corresponding
cases for the Y axis.

In quantum logic, the non-distributive property of this lattice is
used to formulate the following non-equivalent statements:

spin X+ AND (spin Y+ OR spin Y–)

(spin X+ AND spin Y+) OR (spin X+ AND spin Y–)

The first statement is true in the physical world, whereas the second is
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always false since it is not possible to simultaneously specify the spin
in two different directions. The fact that the logic of a particle’s spin is
non-distributive can be drawn from this. This is as far as physics go.

It is interesting to observe that the state of elementary particles
leads to certain logic. This idea, which we have encountered on other
occasions, also appears in the physical world. Secondly, it is interesting
to note that the value of the first statement, which is true, is not 1 but
“spin X+”, it is a partial and not an absolute truth. It is also interesting
to note that the environment of quantum logic is a D4 dialectic lattice
as it appears in Figure 6.

Figure 6: Quantum spin, D4 dialectics.

Finally, there is a natural negation in this logic–a notion which has
not been handled by traditional quantum logic–, which is the follow-
ing:

N = (0 1)(spin X+ spin X–)(spin Y+ spin Y–)

which establishes relations of inversion of the particle’s spin.76

The dialectics of Pythagoras and his heirs

Pythagoras (–569?, –475?) has been studied mostly by Diogenes Laërtius
(3th century B.C.).77

76 This is not the time to develop Niels Bohr’s notion of complementarity which is
linked to the study of negations in quantum lattices and dialectic opposites.
77 I leave out the quote on the straight-angle triangle because it bears no relation to the
topic at hand.

66



Natural dialectics

The principle of all things is the monad or unit; arising from
this monad the undefined dyad [ . . . ] the elements of which
are four, fire, water, earth and air; these elements interchange
and turn into one another completely, and combine [ . . . ]
There are also antipodes, and our “down” is their “up”. Light
and darkness have equal part in the universe, so have hot
and cold, and dry and moist [ . . . ] [17, VIII, 25–26]

[Living creatures] It has in it all the relations constituting
life, and these, forming a continuous series, keep it together
according to the ratios of harmony, each appearing at regu-
lated intervals. [17, VIII, 29]

The soul of man, he says, is divided into three parts, intelli-
gence, reason, and passion. [17, VIII, 30]

In these fragments we find several dialectic notions: the idea of op-
posites, of “harmonious” relations–which were subsequently attributed
to music–and the triple structure of human nature.

Multiple stories involving his musical theory and its relationship to
the celestial spheres can be added to this information. The idea behind
this is simple: the moving spheres, visible to the naked eye, are 7–the
Sun, the Moon, Mercury, Venus, Mars, Jupiter and Saturn–and so is the
musical 7-note scale.78 This led to the correspondence between these
two structures–“ordered” structures, according to the medieval idea–as
an essential part of the universe being attributed to him. The rotation
of the celestial spheres would be responsible for “heavenly music”.

The ideas attributed to Pythagoras have persisted throughout the
centuries. They have appeared many times at several moments and
with regards to various topics. From all of these we will analyze two
cases: Paracelsus and Kepler.

Paracelsus is the nom de plume of philosopher, doctor and alchemist
Theophrastus Bombastus von Hohenheim (1493, 1541). It is interest-
ing for us to go over his main ideas which describe his vision of the

78 The Greeks had nothing like the 7-note scale, see [33], this is a medieval, and not
Greek, notion. It is one of the many legends on Pythagoras.
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universe, see [73].79 The first statement is the existence of the three
“ingredients” of the universe:

He [God] originally reduced it to one body, while the el-
ements were developing. This body He made up of three
ingredients, Mercury, Sulphur, and Salt, so that these three
should constitute one body. Of these three are composed all
the things which are, or are produced, in the four elements.
[73, GE, I, vi]

We must first and foremost point out that Mercury, Sulfur or Salt
are not the ordinary products known as such, but something more akin
to the “Platonic” or “philosophical” essence of these products. From
this basic triad, the quartet of Greek elements is generated, and from
there, the seven metals.

From that chaos God built the Greater World, separated into
four distinct elements. Fire, Air, Water, Earth. Fire was the
warm part. Air only the cold, Water the moist, and, lastly,
Earth was but the dry part of the Greater World. [ . . . ] If
this, by alchemical art, be anatomised and separated, all the
seven metals, and these pure and unmixed, proceed from it,
namely, gold, silver, copper, tin, lead, iron, quicksilver [ . . . ]
[73, NT, VIII]

Also, these metals are “philosophical” and not vulgar, as the follow-
ing passage from the Catechism shows, and as appears in other passages
from his books:

Q. When the Philosophers speak of gold and silver, from which
they extract their matter, are we to suppose that they refer to
the vulgar gold and silver?

A. By no means; vulgar silver and gold are dead, while those
of the Philosophers are full of life. [73, CA]

79 This book contains a compilation of Paracelsus’ works. The following abbreviations
will be used with the aim of condensing the references: The Coelum Philosophorum
(CP), The Aurora of the Philosophers (AP), The Generations of the Elements (GE),
Concerning the Nature of Things (NT), A Short Catechism of Alchemy (CA).
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The “philosophical” metals are identified with the seven moving
spheres, which, in turn, are not visible, but “philosophical” objects.
The correspondence is as follows: Sun↔ Gold, Moon↔ Silver, Mer-
cury ↔ Mercury, Venus ↔ Copper, Mars ↔ Iron, Jupiter ↔ Tin y
Saturn↔ Lead. These metals can be transmuted between each other
following some very precise rules.

[ . . . ] pay attention to Saturn, which is the highest of all, and
then is succeeded by Jupiter, next by Mars, the Sun, Venus,
Mercury, and, lastly, by the Moon. [ . . . ] experience teaches
us that Mars can be easily converted into Venus, not Venus
into Mars, which is of a lower sphere. So, also, Jupiter can be
easily transmuted into Mercury, because Jupiter is superior to
Mercury, the one being second after the firmament, the other
second above the Earth, and Saturn is highest of all, while
the Moon is lowest. The Sun enters into all, but it is never
ameliorated by its inferiors. [73, CA]

[ . . . ] in order to transmute the five lower and baser metals,
Venus, Jupiter, Saturn, Mars, and Mercury, into the two per-
fect metals, Sol and Luna, you must have the Philosophers
Stone. [73, NT, VII]

Ultimately, the chain of possible transmutations is:80

Saturn (lead) → Jupiter (tin) → Mars (iron) → Venus
(copper)⇒Moon (silver)⇒ Sun (gold)

where→ indicates a simple transmutation or from greatest to lowest,
and⇒ indicates a transmutation that implies the philosopher’s stone.

Ultimately, Paracelsus’ theory consists in a collection of univer-
sal correspondences which carry everything that is real to the seven
planets-metals, which leads to the four Greek elements, the three “philo-
sophical” ingredients and also the binary, female-male classification.
This correspondence extends to the human body: Sulphur is likened

80 It might be of interest to note that the chain of transmutations increases the value of
metal until reaching its maximum for gold.
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with our emotions and desires, Salt, with the body, and Mercury, with
our higher mental faculties.

A century after Paracelsus, Johannes Kepler revisited Pythagorean
thought, now applied to astrology. In 1618’s Armonice mundi, he is pre-
occupied with the arrangement of the planets within the Solar System.
The distances of the 5 planets to the Sun became a matter of obsession
for Kepler, who went as far as to link them to the regular solids and the
musical scales. He thus resumed Pythagoras’ idea. As a sample of his
results, we can quote the following statement:

The extreme movements of the planets had to designate
pitches or strings of the octave system, or notes of the mu-
sical scale. [50, V, proposición xxii]

What do Pythagoras, Paracelsus and Kepler have in common? In all
of them we find a search for a universal correspondence between reality
and a very simple mathematical or formal structure. These structures
have 2, 3, 4, 5 or 7 elements, a direction of rotation and are the “ul-
timate representation” of reality. In the language used in this book,
a correspondence with a lattice which admits a rotation is established
and there is a form of becoming of the elements.

Many-valued logic

This study intends to be a formal inquiry on logic. From this point of
view, it may be considered an incursion into the subject of many-valued
logic. It is well-known that this topic has been studied many times as an
abstract generalization of Boolean logic. This work is different in that
it attempts to focus on the issue of dialectics, which is why it ends with
many-valued logic. Up to now, the approach of many-valued logic has
always ended where it began. The words of Garrett Birkhoff are very
enlightening in this respect:

Most systems of modes studied in the past have been simply
ordered by the degree of truth which they ascribe to proposi-
tions. All other knows to me have formed distributive lattices
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and hence sub direct unions to two–valued logics. The au-
thor can see no valid reason for this emphasis on simple or-
dering. It would seem worthwhile to construct propositional
calculi base on non–distributive lattices of truth–values –say,
on the two non–distributive lattices of five elements. In my
own attempts to do this, I have been troubled by the problem
as to how the truth–values of p and q should determine the
truth–value of p⇒ q and ¬p. [4, XII, 8]

This situation springs from a reasonable attempt–using his math-
ematical intuition, Birkhoff sensed that the problem lay with D3, five-
element lattices, the Hegelian lattice–but without an actual orientation
to study the problem. Something similar happened to those who came
after him: they did not stray from the idea that logic is built from nega-
tion and implication, but never considered new operations. As we will
see in the chapters that follow, the issue is far from simple.

In this study, the problem is stated in reverse: dialectics exist in
nature and it is therefore necessary to find their formal expression. As
a consequence, we arrive at many-valued logic. So far, everything is
clear. But our problem does not end with its mere formalization.
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Introduction

This chapter makes an intuitive introduction of several notions. Its
purpose is to make the transition between examples taken from the
natural language, philosophical notions from the past and the formal-
ization of dialectics as an abstract theory.

Throughout the previous chapter, the different figures have pre-
sented lattices without previously defining them. The various diagrams
showed circles connected by lines. The underlying idea is that if an ele-
ment (a circle) is connected to another, a relation of order is established
between the upper and the lower element. In this way, for example, the
elements water or air, as they appear in Figure 4 are inferior to the moist
element, which is, in turn, inferior to the all element.

This structure, which connects elements to one another by means
of an order or hierarchy, is what mathematicians call a lattice. We will
introduce a formal definition in the next chapter.

This idea of order or hierarchy relates to the notion of “greater log-
ical value than” which has appeared in the introductory chapters. This
is the basis for the mathematical structure of a lattice, as we will see in
the formal definition.

The various applications of natural dialectics strongly suggest that
the different dialectic values are formally equivalent: nothing formal
sets them apart. It is the semantics of the applications that which allows
us to distinguish yin from yang, as occurs with the Chinese philoso-
phers or Toynbee. This is not the case in Oscar Wilde. By the same
token, among Ionian or classical Chinese elements, only semantics per-
mit telling one from the other. What is more, East and West take into
account different collections of elements, and even a different amount.
The essential part of their thought relies on their existence and the ro-
tation that occurs between the elements.
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Logic and lattices

The close connection that exists between logic and the algebraic struc-
tures known as lattices has been explained many times. Without in-
tending to make an exhaustive list, we can remember the following
cases:

• Boolean logics, see [4],

• many-valued logics, see [57, 58],

• Piaget’s epistemological genetics, see [2, 76],

• quantum logic, see [48, 49],

• many-valued logics of technical use, see [90].

The links between lattices and Boolean logics are well-known. The
first attempts at building many-valued logics, made by Jan Lukasiewicz
(1878, 1956) and Alfred Tarski (1901, 1983) [57, 58] or Emil Post (1897,
1954)[82], led to very simple lattices, with linear chain structures. How-
ever, we should not overlook the fact that the formalization of lattice
theory did not occur until 1933 to 1937, quite some time after these
first attempts at a generalization. Possibly due to their simplicity, these
attempts did not make as much progress as they could have.

In the study of the genesis of knowledge that Jean Piaget (1896,
1980) embarked upon, he encountered the notion of lattice many times,
which led him to consider intermediate structures, the groupement,81

between groups and lattices, as methods of expression of this genesis
[75]. Ever since the beginning of the formulation of quantum mechan-
ics, John von Neumann (1903, 1957), Garret Birkhoff (1911, 1996) and
other authors [48] acknowledged the need for expressing the logical re-
lations which occur in some aspects of the theory using more complex
lattices than Boolean lattices. In this specific case, the distributive prop-
erty of the logical operation AND suggested taking this path. However,
to this day, these attempts have not yielded new results.

The modern developments in microelectronics have naturally led
to many-valued logics with a direct technical application: see [48, 56,
90].

81 A formalization somewhere of these ideas is presented in [2, III,1].
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This background naturally leads us to consider lattices as the quintessen-
tial environment of logic. This fact definitely influences the existence of
the logical operations AND and OR as basic lattice operations. How-
ever, in order to introduce logic into a lattice–and even more so, in or-
der to formalize dialectic logic–, it is necessary that we specialize lattices
and introduce new notions. This work intends to present “the general
environment of logic” and give precise form–or better yet, algebraic
form–to the statements belonging to spontaneous human thought, all
the way to the ideas of the classics of dialectic materialism.

Lattice operations

In a lattice, two dual operations between two elements can be defined.
One operation connects each pair of elements to a third one which is
“superior” or higher up in the diagram, yet still connected to both.
This operation is called OR. In a dual manner, AND is defined as the
“inferior” to the two elements. Therefore, for example, the definitions
that are found in page 60 can be complemented as follows:

water = moist AND cold water OR air = moist

earth = cold AND dry earth OR water = cold

fire = dry AND hot fire OR earth = dry

air = hot AND moist air OR fire = hot

The idea is to express, for example, that water is what moist and
cold have in common, and that the result of the union of water and air
is moist. These two operations, dual between themselves, have the same
formal structure as the AND, OR operations that belong to the realm
of logic.

Lattices have a maximum and a minimum element. In some di-
agrams, “true” and “false”, “all” and “nothing” or other appropriate
terms have been used. From now on, 1 and 0 will also be used.

The remaining notations and necessary operations will be defined
as they are introduced in the formal exposition. As a general reference
to lattices, please refer to Birkhoff ’s classical books [4, 5] or his most
recent, [16].
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Semantics of logical values

From early on in this work, we assumed that there was a direct corre-
spondence between the uppermost value or supremum of the lattice,
which we referred to as 1, and the logical value “true”. In much the
same way, the logical value “false” was taken as 0, to match the lowest
value or infimum of the lattice. The intermediate elements, the dialec-
tic values, are a novelty introduced by dialectics..

Dialectic values are intermediate logical values between “true” and
“false”, which we call “theses” by extension of Hegel’s terminology. Gen-
erally speaking, we can say they represent intermediate degrees of truth-
fulness or falseness. Further ahead we will offer examples of interpre-
tation for these cases. Historically, in modal logic, Lukasiewicz [58]
referred to the intermediate value of C3 as “hypothetical”, while Re-
ichenbach [49] called it “indeterminate”. In technical logic, different
values for “true” and “false” were introduced using other denomina-
tions.

Traditional propositional calculus can therefore be generalized right
away through the following definition:

Definition 1 We will refer to “thesis value”–or simply, “thesis”–as any
value different from 0. We will refer to as “true” or “absolute truth” as
the value 1, and “false” or “falseness” as the value 0.

This definition differs from Lukasiewicz’ interpretation, who though–
in some way, in degrees of truthfulness–that intermediate values were
doubtful. In dialectics, they express values which are not absolutely
truthful, either because they are stages of a possibly incomplete knowl-
edge, because they may change, or because they are intermediate stages
in a process of becoming. Therefore, in the examples of natural dialec-
tics we have already analyzed, the following, among others, are theses:

• Artistic truth, as Oscar Wilde put it. Although not an absolute
truth, its opposite is also true and not false–it is an intermediate
value.

• Statements which make use of the conjunction “but”. They state
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something which is less than OR but more than AND.

• Transient states of becoming, such as the yin or yang states in the
dialectic of Toynbee’s history.

It is necessary to distinguish some additional types of propositions
which do not exist in binary logic. An expression may be of various
types, as shown in the following definition.

Definition 2 A dialectic function of several variables, depending on
the logical value it acquires for the different values of its variables, is
called:

• a tautology or truth or absolute truth if it is always worth 1,

• a falseness if it is always worth 0,

• a thesis if it is never worth 0,

• a strict thesis if it only acquires dialectic values.

We can generalize the terminology of traditional binary logic in this
way.

The science of logic

We will refer to as logic, without any qualifiers, or binary logic, as the
structures which occur within a binary lattice made up of two elements,
designated as B. The natural dialectics examples we presented had spe-
cial lattice structures. One of our primary concerns will be to establish
boundaries for the lattices in which dialectic logic takes place. This is
by no means a minor endeavor. We will refer to these non-binary lat-
tices as dialectic lattices. Of course, while this is only an informal and
imprecise definition, it simply intendst to introduce the terminology.

The systematic study of the properties of dialectic lattices is a spe-
cialized area of algebra which can be referred to as formal dialectics, or,
better yet, the science of logic. Throughout this study we will only an-
alyze a specific class of lattice. We hope that this set is comprehensive
enough to include the main aspects of the issues that concern thought.
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Intuitively speaking, the dialectic logic in this inquiry is a “quanti-
fied” modal logic. Between the values 0 (false) and 1 (true) there is a
finite and discrete amount of values. Unlike Lukasiewicz’ chains, there
are several elements which may have equivalent logical value. This dou-
ble condition of modal logic and multiple equivalent values is what de-
termines the richness of the proposed dialectic logic.
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Dialectic logic as an image of the universe

The dialectic examples analyzed in the previous pages force us to re-
consider the notions of traditional logic. In some way, logic appears as
a structure associated to the fundamental properties of the universe, as
the bearer of supreme laws of matter and movement. This is the thesis
traditionally defended by dialectic materialism.

Since the study of the universe is based on the formulation of state-
ments, a connection between statements constitutes knowledge of the
universe. The basic structures of the universe must somehow corre-
spond to structures within these statements.

As a summary, dialectic logic can be defined as a combination of
three basic ideas:

• an order relation, which establishes a hierarchy of “logical value”
of the statements,

• a homomorphism, which maintains and acts as a reflection for
the relationships between statements,

• an intrinsic circularity within this structure.

The order relationship is a much generalized, intuitive idea, which
can be expressed in several ways: “it is truer than” or “my reasons are
stronger than”–something usual within the context of a discussion–,
“these ideas are simpler than”–Occam’s razor–, or spontaneous deduc-
tive reasoning: “this is the result of that”. Dialectic logic must provide
an answer to this order relationship.

Dialectic logic appears as a structural correspondence–a homomor-
phism, a mathematical notion which will be defined with precision
further ahead–, which in turn establishes a correspondence between
statements capable of expressing knowledge of the universe, within a
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condensed, simpler structure, made up of a small number of elements:
three, four, five, twelve or more. The existence of this homomorphism
accounts for the coincidence between states or properties of matter and
the logical structures capable of “explaining” these properties.

The idea of circularity is present in this correspondence: the four
Western elements, the five Chinese elements or the three universal entities–
yin, yang, synthesis–, magical–numerological or astrological–interpre-
tations, and so many others, present some degree of circularity. They
are budding homomorphisms, although based on reasonably accurate
attempts. Pythagoras’ thought–and that of his followers–consists in
a homomorphism of seven elements comprising a certain order, and
hence the importance of the moving celestial objects, the musical scales
and many other similar structures. Astrology–both Western and East-
ern–is nothing but a speculation on twelve elements inspired by the
twelve moons of the year. Their periodical nature is self-evident.

A combination of the three basic logical properties naturally leads
to the algebraic structure of a lattice containing specific properties–to
be defined later on–, that we will consider dialectic in nature since it
presents the three properties mentioned above.

Lattices and logical values materialize these material properties into
images, hence this unexpected coincidence between “elements” and
logical values. When the spontaneous epistemology of humans discov-
ered homomorphism, he tried to dress it as something abstract, with
varying degrees of success. In fact, George Boole [6] was the first to
achieve a formalization. This homomorphism on algebraic structures
reflects knowledge of matter and change, and shows that both logic and
mathematics are not the unrestrained creation of the human brain, but
something tied to our material universe with the strength of a law of
nature.

Lattices overview

Lattices are algebraic structures–either finite or infinite–that are de-
fined based on an elementary notion, that of partial order. This notion
is defined as follows.
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Definition 3 A set, L, is said to be partially ordered–or simply
ordered–if a relation ≤, is defined among the elements of L, which,
for every x, y, z ∈ L meet the following:

1. Reflexive or idempotent (I): x ≤ x.

2. Antisymmetrical: if x ≤ y and y ≤ x, then x = y.

3. Transitive (T): if x ≤ y and y ≤ z, then x ≤ z.

By extension, we can say that x < y if x ≤ y but x 6= y.

The simplest example is the chain, a linearly ordered set: given two
elements, x, y, either x ≤ y or y ≤ x. All the elements are comparable
among themselves. A more complex example is 2D4 in Figure 4. In
this case, two elements are comparable if there is a line that joins them
in the diagram. Thus, for example, we have: false≤ earth≤ dry≤ true.
By contrast, earth and fire are not comparable to each other but have
dry as greater than both.

Definition 4 A set, L, is said to be a lattice if for x, y, z ∈ L:

1. It is a set partially ordered by the relation≤.

2. For every pair of elements x, y, there is an element, x . y which
is the greatest of all the elements inferior to both, that is, if z ≤ x
and z ≤ y, then z ≤ x . y.

3. For every pair of elements x, y, there is an element x+ y which
is the smallest of the elements greater than both, that is, if x ≤ z
and y ≤ z, then x+ y ≤ z.

4. There is a top element, which we will call 1, and a bottom ele-
ment, which we will call 0.

It follows that the operations defined in the lattice are idempotent
(I), associative (A) and commutative (C). Therefore, the operations
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may extend to several elements. Due to an abuse of the language, the
two operations will be referred to as sum (+) and product (.).

For every lattice, we can define the idea of contiguous elements.

Definition 5 Two elements x, y of a lattice are considered contiguous
if x < y, and there is no element z in the lattice that meets x < z < y.

Some lattice elements have a specific name.

Definition 6 In every finite lattice, elements contiguous to 1 are re-
ferred to as maximum elements, elements contiguous to 0 are called
atoms.

In this book we use the technical notation for lattice operations.
Therefore, as an example, the following occurs in 2D4, Figure 4:

dry . cold = earth
air + water = moist.

In the mathematical literature on lattices, see [4, 5], ∩ is used for the dot
and ∪ for the + sign.82 The example would be as follows:

dry ∩ cold = earth
air ∪ water = moist.

The logical notation can also be used: the dot is read as AND, and the
+ sign as OR.83 The example would be as follows:

dry AND cold = earth
air OR water = moist.

The monotony properties of the lattice operations are important
and can be found in the following theorem.

82 In [16], the symbols ∨ y ∧ are used, respectively, in lieu of ∪ y ∩, in order to avoid
confusion with the union and intersection operations for the set.
83 Russel and many other logicians use∨ –which is reminiscent of the Latin word “vel”,
which expresses the disjunction– for OR and the dot for AND, see [86].
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Theorem 1 If x, y1, y2, . . . , yp, z1, z2, . . . , zq are elements in a lat-
tice, then if x ≤ yi y zj ≤ x then

x ≤ y1 . y2 . · · · . yp x ≤ y1 + y2 + · · ·+ yp

z1 . z2 . · · · . zq ≤ x z1 + z2 + · · ·+ zq ≤ x

which are the monotony properties of the operations.

Proof. It is clear that x ≤ y1 . y2 since y1 . y2 is the maximum lower
bound of y1, y2 and x must be equal or lesser than this bound. Apply-
ing this same result to y1 . y2 and y3 the following factor is added and
so forth. With this, the first property is proven. The second property
immediately follows, given that x ≤ y1+y2 because x ≤ y1 ≤ y1+y2.
By repeatedly applying this result, it is proven. The third property im-
mediately follows, given that z1 . z2 ≤ z1 ≤ x. By repeatedly applying
this result, it is proven. z1 + z2 ≤ x given that z1 + z2 is the mini-
mum upper bound of z1, z2, then x is equal or greater. By repeatedly
applying this result, as in the first case, the fourth property is proven.
�

Several correspondences between elements can be defined between
two lattices:

Definition 7 A homomorphism H between two lattices is referred to
as a correspondence between xi ∈ L and yi ∈ M such that x1 . x2
and x1 + x2 belonging to L respectively correspond to the elements,
y1 . y2 and y1 + y2 belonging to M. In other words, the two operations
between lattice elements are preserved. If Si L = M, it is called an
automorphism. If the correspondence is biunivocal between L and M,
it is called an isomorphism. If the corresponding elements of x1 . x2
and x1 + x2 are, respectively, y1 + y2 and y1 . y2, it is called a dual or
reverse isomorphism or antiisomorphism.

In this study there is an important case of homomorphism, which
we will refer to as a reduction homomorphism or R-homomorphism.
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Definition 8 An R-homomorphism or reduction homomorphism
between lattices L and M, is a homomorphism such that M has fewer
elements than L. A lattice lacking a nontrivial R-homomorphism is
referred to as an irreducible lattice.

Intuitively, an irreducible lattice cannot be equated with a simpler
one and still maintain its logical properties. Thus, for instance, the
yin-yang lattice in Figure 1 has an R-homomorphism, Hr, given by the
following correspondences:

Hr: 0, yin→ 0’ Hr: yang, 1→ 1’.

This R-homomorphism transforms the yin-yang lattice into the binary
logic lattice 0’, 1 while maintaining the operations · and +. The yin-
yang lattice is reducible. By contrast, the Hegelian lattice in 2 is irre-
ducible. Figure 7 introduces a lattice with an R-homomorphism.

Figure 7: The 2D3 lattice as an example of homomorphism.

This homomorphism, Hr, is given by the following correspondences:

Hr: 0, b, c, C → 0′ Hr: a,A,B, 1→ 1′.

As an example, 1 = A+B → A′+B′ = 1′, a = A .B → A′. B′ = 1′

and so on for the remaining possible cases. The general study of ho-
momorphisms in dialectic lattices falls outside the scope of this study.

Given two lattices, the direct product, Cartesian product or simply,
the product of these lattices can be defined as:
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Definition 9 Given s lattices L1, · · · , Ls the direct (or Cartesian)
product L1 × · · · × Ls is defined as the lattice made up of the ele-
ments (a1, · · · , as), a set of elements of the s lattices, by means of the
order relation:

(a1, · · · , as) ≤ (b1, · · · , bs)

if, for every i, ai ≤ bi is met for the elements of each Li.

The most well-known case of this product occurs with the binary
lattice of two elements, the Boolean logic, see Figure 11. In [16] it is
established that all Boolean logic of a finite number of elements is a Bn

power of the simple Boolean logic.
The product of lattices is not of much interest in dialectics. It

is clear that the Cartesian product, for example, of L1×L2 is homo-
morphic both to L1 and L2. Homomorphisms are very simple: Hr:
(a1, a2)→ a1 and likewise for index 2.

Some lattices of logical interest

One specific set of lattices and functions is of special interest to this
work. The following definitions introduce these cases. With the aim of
completing the notation, Bn or Bn =B× B× · · ·× B will refer to the
n-th power of the Boolean lattice made up of the direct product of n B
Boolean lattices.

A Lukasiewicz-Post lattice, Cn, containing n elements, refers to the
chain of n elements between 0 and 1. The elements have the following
values:

p

n− 1
where p = 0, 1. · · · , n− 1.

These are rational n values between 0 and 1. In this structure, a
logical negation, N can be defined, which has the following property:

N
p

n− 1
=
n− 1− p
n− 1

.

This logic, thus constructed, is defined in [57, 58, 82]. In this logic,
Lukasiewicz includes two modal functions: certainty (Gewissheit) and
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possibility (Möglichkeit).84 These aggregates fail to thoroughly illustrate
what happens in natural dialectics or the proposals of the present work.

In the ternary logic of Hans Reichenbach (1891, 1953) [48, 49]
three functions referred to as negations are considered in the C3 lat-
tice. The “cyclical” function exchanges all the elements and is similar
to the first of the negation functions introduced by Post [82] in Cn.
Evidently, Augustus De Morgan’s (1806, 1871) property is not met. Re-
ichenbach’s “complete negation” lacks an inverse function and does not
comply with De Morgan either. Finally, the “diametrical negation” is
a negation as per Lukasiewicz’s definition. Both Lukasiewicz [57] and
Post [82], in their second definition, match Lukasiewicz’s definition of
negation in Cn.

Dialectic lattices

Loosely defined, a dialectic lattice has two basic properties:

• A rotation which transforms it into itself, an automorphism.

• An antiisomorphism which transforms x+ y into x′ . y′ and du-
ally, where x′, y′ designate the elements corresponding to x, y.

Irreducible lattices are the most important set of dialectic lattices.
However, reducible lattices are also of interest in some cases. For this
reason, the definition of a dialectic lattice is not required to have this
property.

Let us consider lattices which generate a dialectic, and not a Boolean,
logic. We will begin by posing the general definition of a dialectic lat-
tice, resulting in the subsequent definitions.

Definition 10 A dialectic lattice of rank 1 and size n, Dn, is referred
to as the lattice made up of bounds 0 and 1 and n atoms, di, which
meet 0 < di < 1, and are called dialectic elements.

84 If d designates an intermediate value between 0 and 1, Lukasiewicz respectively de-
fines as G(0) = 0, G(d) = 0, G(1) = 1 and M(0) = 0,M(d) = 1,M(1) = 1,
Gewissheit and Möglichkeit.
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These lattices are of major importance to this work. By definition,
the following cases occur:

D0 = B = C2, dialectic lattice of size 0, defined, by an abuse
of the language, as matching the simple or binary Boolean
lattice, or as the minimal Lukasiewicz chain.

D1 = C3, matches Lukasiewicz’ chain of size 3.

D2 = B2, matches the Boolean lattice of size 2 and the yin–
yang dialectics, Figure 1.

D3, Hegel’s dialectic lattice, the basic case in dialectic logic,
Figure 2.

D4, dialectic lattice of size 4, matches the Ionian elements,
Figure 3.

D5, dialectic lattice of size 5, matches the Chinese ele-
ments, Figure 5.

The 2D4 lattice, Figure 4, is comprised within a more complex se-
ries of dialectic lattices. This situation can immediately be extended to
a more general case.

Definition 11 A dialectic lattice of rank r and size n > r, rDn, is
referred to as the lattice made up of the bounds 0 and 1 and r sets of n
elements 0 < di, j < 1, referred to as dialectic. An orden relation such
that di, j < di+1, j−1 y di, j < di+1, j is met. With i = 1, · · · , r and
indexes j = 0, · · · , n − 1, they are considered as n-module. Those
that meet the conditions of Theorem 4 are not considered lattices.

According to this definition, Dn lattices may also be designated as
1Dn; using a shorter notation is simply preferable. On the other hand,
these lattices have properties–given that atoms and maximum elements
match–which make them different and call for a different demonstra-
tion of some theorems.

The definitions of dialectic lattices utilize the elements regarded as
characteristic of dialectic logic. Because we are dealing with lattices,
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there is an orden relation between their elements.85 Lattice 3D5 in Fig-
ure 8 intends to illustrate these notions. It follows that this lattice has
n automorphisms which match the rotations of the n atoms. It also
presents the following properties.

Figure 8: 3D5 dialectic as an example of the general case.

Theorem 2 Every dialectic lattice rDn has the following properties:

• It has n atoms, d1,j , and n maximum, dr,j . The product of the
two atoms is 0 and the sum of the two maximums is 1.

• The sum di,j + di,j+1 of two contiguous elements is di+1,j and
the product di,j . di,j+1 of two contiguous elements is di−1,j+1,
all the operations are n-module.

• It has a rotation defined as R1 di,j = di,j+1 (the sum is consid-
ered to be n-module) and all of the successive applications of this
transformation are also rotations.

• Every element i, j is equal to the sum of the atoms of the lat-
tice which are smaller than it and the product of the maximums
elements which are greater than it, in both cases the basic oper-
ations of the lattice are considered.

85 This definition can be generalized further by increasing the number of indexes: the
first is the rank r and the following are of size n. The operations are n module.
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Proof. These results follow from Definition 10. �

Dialectic lattices display a very simple property, as established by
the following theorem.

Theorem 3 In a lattice rDn, r > 1, every maximum element is the
sum of r atoms. The necessary and sufficient condition for a maximum
element D and an atom d to exist, such that D . d = 0 and D +
d = 1 is that n > r. The property is also met in a dual manner, by
exchanging maximum elements and atoms.

Proof. Let us consider the atoms which are smaller than a maxi-
mum element (r, 0), se Figure 8. It follows that they are:
(1, 0) · · · (1, r − 1), r atoms in total. For an atom and the maximum
element to add up to 1, at least one additional atom must exist, which
will only occur if si n − 1 ≥ r that is, if n ≥ r + 1. These atoms also
meet the condition for the product. The difference n−r is the number
of atoms that meet this property and, therefore, they are not smaller
than the considered maximum. The dual case is proven in the same
manner. �

Theorem 4 rDn structures, with an even r, are not lattices if they
meet 2(r − 1) ≥ n.

Proof. In order to establish these concepts, we will consider Figure
9 with the 3D4 structure. We can immediately detect that there are two
values for the sum a+c = A,C, for example, which is unacceptable in
a lattice. Dually, there are also two values for the product B .D = b, d,
for instance. In general, this occurs in structures with an even n, and
where there are two sets of r atoms which complete the period n of the
sum of the corresponding indexes, that is, the condition 2(r− 1) = n.
If we take 4D6, r consecutive atoms add up to a maximum and the
same case of the double result of the sum appears once again. What is
more, this also happens in 5D6, where not only 4 atoms have a double
sum, they also have 4 elements of logical level 2, see Definition 12, and
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Figure 9: 3D4 structure as an example of a non-lattice.

so do the corresponding products, in a dual manner. Therefore, for
every r such that 2(r − 1) ≥ n as long as r < n the double sums and
products appear, with no lattice involved. Table 3 presents structures
which are not lattices. �

Table 3: Examples of non-lattices.
n r cases

4 3 3D4

6 4 4D6, 5D6

8 5 5D8, 6D8, 7D8

10 6 6D10, 7D10, 8D10, 9D10

. . . . . . . . .

These false lattice cases would yield a dialectic where two conclu-
sions of the same logical level might be possible–see Definition 12–
based on the same premises. This dialectic might be of interest and be
applicable to certain scientific purposes, but the present study will not
focus on this.

A major notion in dialectics is the idea of logical level of an element
that is related to the element’s “degree of truth” or proximity to 1.
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Definition 12 The number i refers to the logical level of an element
di,j of lattice rDn –generically called dialectic elements of the lattice.
The dialectic elements of Dn have logical level 1.

A basic theorem of automorphism derives from this definition.

Theorem 5 An automorphism transforms an element of a dialectic
lattice into another element of equal logical level. This relation is an
equivalence relation.

Proof. The logical level s of element ds,t allows to build a chain of
the type 0 < d1,p < d1,q < · · · < ds,t with contiguous elements. Re-
ciprocally, if the chain exists, the logical level is s. The automorphism
transforms this chain into another with the same number of elements
and the same relations, then it maintains the logical level. The auto-
morphisms in a lattice make up a group. Then, a = I a, where I is the
identity automorphism. If A is an automorphism and b = Aa then
a = A−1 b. If b = A1 a amd c = A2 b then c = A2A1 a. The three
conditions for equivalence are met, idempotency (I), commutative (C)
and transitive (T), therefore it is proven. �

Theorem 6 If two different elements in a dialectic lattice have the
same logical level, then they are not comparable.

Proof. Following the definition of a lattice, for two elements a and
b to be comparable–that is, related to each other as a ≤ b or inversely–it
is necessary for them to have a different first index, that is, logical level.
�

Definition 13 An element ds,i of a lattice rDn, where r = 2s− 1, is
referred to as the central element of the lattice.

Central elements have a chain of s elements up to 0 and also s el-
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ements up to 1–that is why they are referred to as central. In Figure
8 elements (2, i) are central elements.86 In the Hegelian example, the
three elements t, a, s are central values. By contrast, the lattice in Fig-
ure 4 has no central values.

The range r of rDn lattices determines a certain type of dialectic.
There is only one zero-range dialectic, and that is binary logic. There is
infinite number of other dialectics depending on the number of atoms,
but each rank defines a family that has different properties. Rank-1
dialectics can be referred to as Hegelian or simple and they serve to
analyze the problems of contraries and becoming. Rank-2 dialectics al-
low us to analyze problems concerning historical materialism related
to class struggle. Rank-3 dialectics allow us to analyze some of the
problems linked to scientific theories and problems belonging to his-
torical materialism related to the succession of the modes of produc-
tion. It is possible that greater ranks may be useful in certain scientific
or epistemological problems or those associated with the evolution of
the species, but this study will not delve into logics belonging to these
ranks.

The notion of complex lattices can be extended to dialectic lattices
having three or more indexes–the first one refers to the logical level and
the last one to the number of elements of equal level. It is possible that
they may be useful in understanding the logic of scientific theories, but
this topic is only suggested in this study.

The set of lattices defined comprises the cases of interest, as were
mentioned in the beginning of this section. A two-dimensional dia-
gram, Table 4, will allow us to properly visualize the mutual relations.
Those that fulfill Theorem 4 are not in bold and therefore, they are not
lattices.

This table associates the various lattices. As we move along the
horizontal axis, the number of existing atoms and elements increases.
If we move vertically, the rank increases and it is possible to have more
logical values between “false” and “true”, which we generically refer to

86 If there is a negationN such that the equationN x = x, then x is a central element,
as occurs with all the elements in Dn. As is clear, if a negation has this property then
is not a strict negation.
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Table 4: Dialectic lattices by rank and number of atoms.
r / n 1 2 3 4 5 6 7 . . .

0 C2 = B=0D1

1 C3 = 1D1 B2 = 1D2 1D3 1D4 1D5 1D6 1D6 . . .

2 C4 = 2D1 2D3 2D4 2D5 2D6 2D7 . . .

3 C5 = 3D1 3D4 3D5 3D6 3D7 . . .

4 C6 = 4D1 4D5 4D6 4D7 . . .

5 . . . 5D6 5D7 . . .

6 . . . 6D7 . . .

as dialectic elements. rD∞ can also be defined. These are of interest
for purposes of some endless processes, such as the case, for instance,
of the river in Heraclitus, see page 58.

Dialectic lattices and automorphisms

Automorphisms in dialectic lattices–except for Dn lattices–are made up
of two families: rotations and symmetries. Rotations have been defined
in Theorem 2, and the present section will deal with symmetries. In Dn
lattices, any permutation of the elements is an automorphism.

In 2Dn lattices the following theorem applies. We will use the
mathematical notation which employs di for atoms and Di for max-
imum elements. The following theorem shows that there are 2n auto-
morphisms in the lattice.87 There are n rotations and an equal number
of symmetries.

Theorem 7 Sj symmetries in 2Dn fulfill the equations Sj di =
dn−i+j and Sj Di = Dn−i+j−1, the operations are n-module.

Proof. It is only necessary to verify the properties for the sums of
the atoms or the product of contiguous maximums elements. We will
consider two contiguous atoms di + di+1 = Di, applying the symme-
try we obtain Sj(di + di+1) = Sj Di = Dn−(i+1)+j . But Sj di =
dn−i+j and Sj di+1 = dn−(i+1)+j , then Sj di + Sj di+1 = dn−i+j +

87 This result has been directly proven by a software program seeking all the possible
cases of automorphism.
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dn−(i+1)+j . Since these two atoms are contiguous, their sum has the
index of the lowest index of the sum elements, then it is Dn−(i+1)+j

and the condition of automorphism of the sum is met. In a dual man-
ner, if we consider two contiguous maximum elements Di . Di+1 =
di+1, by applying the symmetry we obtain
Sj(Di . Di+1) = Sj di+1 = dn−(i+1)+j . But Sj Di = Dn−i+j−1
and Sj Di+1 = Dn−(i+1)+j−1. Since these two maximum elements
are contiguous, their product will have the index that is greater from
the multipliers, then it is dn−i+j−1 = dn−(i+1)+j and the condition of
automorphism of the product is met. �

The following theorem analyzes the product of two symmetries.

Theorem 8 Two symmetries Sj , Sk in 2Dn comply with the equa-
tion of the product–the successive application of each– SjSk = Rj−k,
where R is the rotation of the lattice.

Proof. If we consider an atom, Sk di = dn−i+k is obtained. By ap-
plying the other symmetry Sj dn−i+k = dn−(n−i+k)+j = di+j−k, that
is, Rj−k di as we sought to demonstrate. If we
consider a maximum element, we obtain SkDi = Dn−i+k−1. Then
Sj Dn−i+k−1 = Dn−(n−i+k−1)+j−1 = Di−k+j = Rj−kDi as we
needed to demonstrate. �

As a consequence of this theorem, it turns out thatSjSj = R0 = I ,
identity. As their name suggests, the symmetries are involutory. The
following theorem presents the product of a symmetry and a rotation.

Theorem 9 If we consider a rotation Rj and a symmetry Sk in
2Dn, these comply with the equations of the product–their successive
application– SkRj = Sk−j and RjSk = Sj+k.

Proof. If we consider an atom, Rj di = di+j . By applying the
symmetry, we obtain Sk di+j = dn−(i+j)+k = dn−i+(k−j) = Sk−j di.
If we consider a maximum, Rj Di = Di+j , applying the symmetry
it results in SkDi+j = Dn−(i+j)+k−1 = Dn−i+(k−j)−1 = Sk−j Di,
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then the first equation is proven. Inversely, Sk di = dn−i+k. Applying
the rotation, it results in Rj dn−i+k = dn−i+k+j = Sj+k di. If we
consider a maximum, SkDi = Dn−i+k−1. Applying the rotation, it
results in Rj Dn−i+k−1 = Dn−i+j+k−1 = Sj+kDi, then the second
equation is proven. �

This theorem shows that RjSkRj = RjSk−j = Sk−j+j = Sk for
any rotation in the lattice. Also, Sj = RjS0 is obtained, allowing to
obtain all of the symmetries in the lattice.88

The following theorem shows that there are 2n automorphisms in
the 3Dn lattice:89 there are n rotations and an equal number of sym-
metries, as in the previous case.

Theorem 10 The symmetries Sj in 3Dn fulfill the equations Sj di =
dn−i+j , Sj Ci = Cn−i+j−1 and Sj Di = Dn−i+j−2, the operations
are n-module.

Proof.The demonstrations for the sums of the atoms or the prod-
uct of contiguous bounds–where the result is a central element–is the
same as in the case of Theorem 7 90, only the case of the sum and the
product of central elements must be analyzed. If we consider two con-
tiguous central elements Ci . Ci+1 = di, by applying the symmetry, we
obtain Sj(Ci . Ci+1) = Sj di+1 = dn−i−1+j . But SjCi = Cn−i+j−1 y
SjCi+1 = Cn−(i+1)+j−1, thenSjCi . SjCi+1 = Cn−i+j−1 . Cn−(i+1)+j−1 =
dn−i+j−1, then it is proven. The sum of two contiguous central ele-
ments is Ci + Ci+1 = Di, applying the symmetry we obtain Sj(Ci +
Ci+1) = SjDi = Dn−i+j−2. But SjCi = Cn−i+j−1 y SjCi+1 =
Cn−(i+1)+j−1, then SjCi + SjCi+1 = Cn−i+j−1 + Cn−(i+1)+j−1 =
Dn−(i+1)+j−1 = Dn−i+j−2 = SjDi with which the theorem is proven.
�

88 These results are of interest to the study of the group of automorphisms, a subject
that the present work does not cover in detail.
89 This result was directly proven by a software program seeking all the possible cases
of automorphism.
90 The fact that the equations have a constant value in the case of maximums and
central elements changes nothing with regards to the demonstration.
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The following theorem analyzes the product of two symmetries.

Theorem 11 Two symmetriesSj , Sk in 3Dn fulfill the equation of the
product–the successive application of each one– SjSk = Rj−k, where
R is the rotation of the lattice.

Proof. The demonstrations for the atoms and central elements
match that of Theorem 8 for atoms and maximums, since the equa-
tions are the same. The demonstration in the case of maximums is
sufficient. If we consider a maximum, we obtain SkDi = Dn−i+k−2.
Then Sj Dn−i+k−2 = Dn−(n−i+k−2)+j−2 = Di−k+j = Rj−kDi as
needed to be proven. �

As a consequence of this theorem, we obtain SjSj = R0 = I , the
identity. As their name suggests, the symmetries are involutory. The
following theorem presents the product of a symmetry and a rotation.

Theorem 12 If we consider a rotationRj and a symmetry Sk in 3Dn,
these fulfill the equations of the product–their successive application–
SkRj = Sk−j and RjSk = Sj+k.

Proof. The demonstration is similar to that of the previous cases
and is omitted for the sake of brevity. �

The previous theorems on automorphisms in 2Dn and 3Dn have
similar demonstrations. This allows us to state that the theorems are
valid for rDn –with r > 1– in general.

Cones and intervals

Introducing some new notions is necessary to continue to analyze di-
alectic lattices.
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Definition 14 Two elements a, b in a lattice L allow to define the fol-
lowing sets of elements:

1. Cone: a set of x elements that fulfill x ≥ a;

2. Inverted cone: a set of y elements that fulfill y ≤ b;

3. Interval: a set of z elements that fulfill a ≤ z ≤ b.

These definitions are similar to the definitions of ideal and dual
ideal in lattice theory.91 Figure 10 presents some examples of the three
types of elements we have defined. The cone x ≥ a, inverted cones
y ≤ B and y ≤ C and intervals a ≤ x ≤ B, a ≤ x ≤ C and their
intersection, which is also an interval, are depicted.

Figure 10: Cones, inverted cones and intervals of the lattice.

As an example, a cone in Dn is the set made up of S = (b, 1). Sim-
ilarly, in 2Dn, Figure 7, S = (b, B, 1) is also a cone and in 3Dn, Figure
9, S = (a, p,A, 1) is also one.

The following theorem is fulfilled with regards to these elements.

Theorem 13 In a lattice L, the cones, inverted cones and intervals are
sub-lattices of L.

91 The definition of ideal is: An ideal of a lattice L is a subset of S elements such that if
x, y ∈ S, then x+ y ∈ S; if z ≤ x then z ∈ S. The dual definition is: A dual ideal of a
lattice L s a subset of S elements such that if x, y ∈ S, then x . y ∈ S; if z ≥ x then z ∈
S.
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Proof. Let us consider the case of a cone of vertex a. If x, y are
two elements in the cone, then x ≥ a and ≥ a, then x + y ≥ a y
también x . y ≥ a due to monotony properties. In a dual manner, this
also applies to the inverted cone, and as a consequence of both results,
it is also valid for the interval. �
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Monotonic and inverse monotonic functions

The notions of functions with monotony or inverse monotony are basic
ideas in the study of negations.

Definition 15 A function f(x) defined within a lattice is referred to
as monotonic if for x ≤ y, belonging to the lattice, then f(x) ≤ f(y);
it is referred to as inverse monotonic f(x) ≥ f(y).

It is also usual to say that the function preserves or inverts the order
of the lattice, as expressions equivalent to monotony. The concept of
automorphism is closely related to the notion of monotony: automor-
phisms preserve order within the lattice. Due to this close relationship,
we can prove the following theorem.

Theorem 14 If a transformation of a lattice L into L, has an inverse
and is monotonic, then it is an automorphism.

Proof. IfA is the transformation andA−1 its inverse, both preserv-
ing their order. Since for every pair of elements of the lattice x + y ≥
x monotony dictates that A(x + y) ≥ Ax. In a similar manner,
A(x + y) ≥ Ay is obtained, and due to the monotony of the sum
A(x + y) ≥ Ax + Ay is obtained. If we apply this equation to A−1

on the valuesAx,A y thenA−1 (Ax+Ay) ≥ A−1Ax+A−1Ay =
x + y and applying A to this equation, then Ax + Ay ≥ A(x + y)
and from this, as the final result, we obtain A(x + y) = Ax + Ay.
In a dual manner the equation of the product is demonstrated and the
theorem is proven. �
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Theorem 15 The inverse of a monotonic (inverse) function f(x) is an
(inverse) monotonic function.

Proof. For x ≤ y, if f−1(x) y f−1(y) are not comparable, x and y
would not be either. Let us consider the case of a monotonic function,
in the inverse case the demonstration is the same. If it should occur
that f−1(x) ≥ f−1(y), then applying the monotonic function f we
obtain x ≥ y against the hypothesis. �

Intuitive notions on negation

The presentation of natural dialectics and what we know of binary logic
rests upon the notion of negation. According to the general analysis we
have introduced, this notion must be defined within a lattice. We will
then investigate, what constitutes a negation?

In technical logics, the notion of negation is usually omitted since
most of the times there is no use for it. In the attempts of multi-valued
logics at generalization, negation is usually explicitly defined–with no
reference to a formal property–by means of an equation which appears
arbitrarily. It is usual, however, for these definitions to meet the De
Morgan property despite the latter not being thought to represent an
essential aspect of negation.

At first sight, it may appear that a negation must be defined by its
meaning, but this is not the case. A mix-up of concepts which it is not
fall prey to to engage in is to blame for this. Negation is a logical op-
eration and should only be defined by its formal properties. There are
four dialectic concepts which are related, but different. First, there is
the concept of negation. Second, the concept of logical opposites. Third,
there is the notion of material opposites. Finally, to complete the sce-
nario, there is the idea of penetration of opposites or unity and struggle
of opposites.

In the imprecise formulations of dialectics, these differing ideas are
usually mistaken for one another. A first step towards precisely defining
logical content consists in separating them. In this section we will take
care of the meaning of the first two. Further ahead we will cover the
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concepts of material opposites and penetration of opposites.

The formal properties of negation

The notion of negation extends an idea developed by Boolean logic.
Negation is a unary operation, defined over all the elements of the lat-
tice. If x is an element of lattice L, the notation N x will be used to
designate a negation of x. We will use this notation since there is more
than one negation in a dialectic lattice and therefore, it is not conve-
nient to use the classic symbol ¬x. The different negations are written
as N1, N2, · · · .92

If we take a logical value and successively apply a negation, a series
of logical values are obtained which, at some point, must come back
onto themselves and lead to the starting logical value. This is a general-
ization of the Hegelian negation. This demand translates the property
of the double negation which in Boolean logic matches the statement,
and of the triple negation, which in Hegelian logic somehow leads to
the starting point. For this reason, negations are unary operations with
an inverse. The inverse function of N will be indicated as N−1.

The requirement for a negation to have an inverse characterizes it
very poorly from an algebraic standpoint. Formally speaking, there is
another fundamental logical property: the De Morgan property. This
property exists in the universe of statements, before applying the R-
homomorphism. In human thought, this property is used sponta-
neously.93 The negation is fully characterized through the De Morgan
property.

92 The multiplicity of negations is not uncommon in the natural sciences. Let us con-
sider the notion of “opposite”. It is clear that, given any element or action, there are a
number of possible opposites. Therefore, for example, what is the opposite of life? A
list can be drafted immediately: death, a comatose state, a tormented soul, a doomed
soul, a soul in paradise, reincarnation. There will be as many opposites as there are
beliefs on life. The opposite of love calls for a long list as well: hate, religious ascetic,
insane, dead and many other possibilities.
93 As an example, it is interesting to note that the De Morgan property exists in Span-
ish as a natural and extraordinarily precise occurrence. In fact, the negation of the
sentence “o A o B” [either A or B] is the sentence“ni A ni B” [neither A nor B] which
expresses the De Morgan property, if we believe that“ni” is a contraction of “no y”.
[not and]. In other languages this relationship is not as perfect.
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Definition 16 A negationN in a lattice is a unary operation, with an
inverse, which meets the De Morgan property: N(x+ y) = Nx .Ny
and also N(x . y) = Nx+Ny.

The De Morgan property defines an anti-isomorphism within the
lattice. It indicates that there is a certain “symmetry” within the struc-
ture of the logical values. It is also linked to a property of preservation
of the order defined in the lattice.

Theorem 16 Every negation N defined in a lattice is an inverse
monotonic function (or one that inverts the order).

Proof. If a function meets the De Morgan property for two logical
values that verify that x ≤ y, then applying the elementary properties
we have x + y = y and also x . y = x. Applying the De Morgan
property to the previous expressions, we have N x .N y = N y and
alsoN x+N y = N x and from any of these two expressions it follows
immediately that N y ≤ N x, as needed to be proven. �

Theorem 17 If a function f(x) has an inverse and inverts the order
in a lattice, then N x = f(x) is a negation.

Proof. Let us consider two elements in the lattice. Since we have
that x + y ≥ x, due to the inverse monotony property this leads to
f(x + y) ≤ f(x) and from x + y ≥ y we have that f(x + y) ≤
f(y). From the monotony of the product we have that f(x + y) ≤
f(x) . f(y). In a dual manner we can prove that f(x . y) ≥ f(x) +
f(y). Let us consider now f−1, inverse of f , which is also an inverse
monotonic function, and apply this property to f(x) and f(y), then
f−1(f(x) . f(y)) ≥ f−1(f(x)) + f−1(f(y)) = x + y. If we apply
f to the formula, keeping inverse monotony in mind, we have that
f(x) . f(y) ≤ f(x+y). Combining the results, we obtain f(x) . f(y) =
f(x+y), one of the De Morgan equations. In a dual manner we obtain
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the other property and it is proven that f is a negation. �

Theorem 18 Every negation complies with: N 0 = 1 and N 1 = 0.

Proof. If x is a lattice element and we define z = N−1 x, then we
have 0 . z = 0, then, for every x, we have N 0 + x = N 0. Replacing
x = 1 it yields that N 0 = 1 + N 0 = 1. The other equation is
demonstrated in a dual manner. �

This result allows us to take another step towards interpreting log-
ical values in a lattice. We can assimilate the uppermost value of the
lattice, 1, to the logical value “true”, and the lowermost value, 0, to the
logical value “false”, just as in the classic binary interpretation. With
this presentation, the sub-lattice made up of 0 and 1, with any nega-
tion, is indistinguishable from binary logic. Through this argument,
we begin to interpret the meaning of the logical values of the lattice.
With regards to the values “true” and “false”, the defined negations be-
have as expected.

Negations include some special cases, which are useful in logic and
are referred to as strict negations.

Definition 17 A negation N defined in lattice L is referred to as a
strict negation if it turns every element into a strict opposite, that is, if
for any x we have: x+N x = 1 and x .N x = 0.

The Hegelian negation (01)(t a s) is strict. The following theorem
is verified.

102



Negation

Theorem 19 The composition of negations has the following proper-
ties:

1. The product of an even number of negations is an automorphism
in L; the product of an odd number of negations is a negation.

2. Every negation of L can be obtained as the product of any fixed
negation N0 for every automorphism of L.

3. If N1 and N2 are two negations in L then N3 = N−11 N2N1 is
a negation. If N2 is strict, then N3 also is.

4. If N is a negation and A is an automorphism, then A−1N A is
also a negation. If the negation is strict, A−1N A also is.

5. If N is a strict negation, N−1 also is.

Proof. We will demonstrate this one item at a time.

1. This statement is immediate due to the monotony properties.

2. If we consider a specific negation N0 and any negation N , it is
clear that N = (N N−10 )N0 where A = N N−10 is an automor-
phism, as needed to be proven.

3. Due to property 1, N3 is a negation. This can also be proven
directly. Let us consider

N3 (x+ y) = N−11 N2N1(x+ y) = N−11 N2 (N1 x .N1 y) =

= N−11 (N2N1 x+N2N1 y) =

= N−11 N2N1 x .N
−1
1 N2N1 y = N3 x .N3 y

In an equal manner it is proven that N3(x . y) = N3 x + N3 y.
If N2 is a strict negation, for every x we have that x + N2 x =
1. Multiplying to the left by N−11 and to the right by N1 we have
that x + N−11 N N1 x = 1. Applying this reasoning to the dual
case, it is proven.

103



An Inquiry into Dialectic Logic

4. A−1N A is a negation given that A−1N A(x + y) =
A−1N(Ax+Ay) = A−1(N Ax .N Ay) = A−1N Ax .A−1N Ay.
In a similar manner it is proven for x . y. It is clear that Ax +
N Ax = 1 if N is a strict negation. Applying A−1 it yields that
x+A−1N Ax = 1. This is proven in a similar manner for x . y.

5. N−1 is a strict negation given that x + N x = 1, then, applying
the negation N−1 it yields that N−1x . x = 0 and in a similar
manner the dual case N−1x+ x = 1 is proven.

This proves all the cases. �

Definition 18 The degree of a negation N is referred to as the small-
est number of times it is necessary to apply N in order to obtain an
identical transformation. The degree is an even number.

For example, in Hegelian lattice D3 negation (0 1)(t a s) has degree
6, but negation (0 1)(t a) has degree 2. Not all the negations in a lattice
have the same degree.

Theorem 20 In a lattice rDn all the negations of an element of logical
value s are elements of logical value r − s+ 1.

Proof. Let us consider an element ds,t from the lattice. Given the
chain:

0 < d1,p < d2,q < · · · < ds,t < ds+1,u < · · · dr,z < 1.

This chain has s − 1 contiguous elements between 0 and element ds,t
and r − s elements until 1, in total there are r dialectic elements. Ap-
plying a negation N we have:

1 > N d1,p > N d2,q > · · · > N ds,t > N ds+1,u > · · · > N dr,z > 0.

Then, N ds,t has r − s elements until 0, therefore, its logical level is
r − s+ 1 as needed to be proven. �

As a corollary of this theorem we have that if r = 2s − 1 then the
negation of a central element of logical value s, is of logical value s.
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Dialectic opposites

It is necessary to distinguish the notion of opposites from that of strict
opposites, just as we have made a distinction between negation and strict
negation.

Definition 19 The element y of a dialectic lattice is referred to as a
simple opposite or simply an opposite, if there is x and a negation N
such that y = N x.

The following theorem establishes some properties of opposites.

Theorem 21 If the element y of a dialectic lattice is an opposite of x,
then::

1. the element x is an opposite of y;

2. the element Nx is an opposite of Ny, where N is any negation;

3. the element Ny is an opposite of Nx.

Proof. In property 1, by the definition of opposites, there is a nega-
tionNi such that y = Ni x, then it occurs that y = N−1i x and they are
opposites. In property 2, applying N to the already known equation,
we have that N y = N Ni x, then N y = (N NiN

−1)N x, but due to
Theorem 19 N NiN

−1 is a negation, then it is proven. Property 3 is a
consequence of 1 and 2. �

Examples in D3

In order to consolidate the ideas introduced, let us consider Hegelian
lattice D3 from Figure 2 and the negation defined as N 0 = 1, N 1 =
0, N t = a, N a = s, N s = t, where t, a, s are, respectively, thesis,
antithesis and synthesis. Using the replacement notation, this negation
can be written as:

105



An Inquiry into Dialectic Logic

N = (0 1)(t a s).

Since a negation in L is a permutation of its elements, a notation
similar to the one used in replacement groups can be employed. In this
way, it is indicated that 0 becomes 1 and reciprocally, t becomes a, be-
comes s and s becomes t. Each list enclosed in parentheses indicates a
closed cycle. If any element does not appear, it means that the opera-
tion transforms it into itself.

In the lattice considered, 6 negations can be defined which corre-
spond to the 6 possible permutations of the elements t, a, s. These
negations are:

(0 1) (0 1)(t a) (0 1)(t s) (0 1)(a s) (0 1)(t a s) (0 1)(t s a).

The last two negations are strict. The automorphisms are also 6 and
they are:

I (t a) (t s) (a s) (t a s) (t s a)

where I is the identical transformation. The set of the 12 transforma-
tions make up an algebraic group94 that we refer to as GL, the group of
transformations of the lattice L.

As we will see, within the same lattice L there may be negations
in a broad sense as well as strict negations. It is important to make
this distinction when studying some problems. In the exposition that
follows it will be explicitly indicated whether a negation is strict in the
context where it is used.

Only those negations which exchange the three elements within the
Hegelian lattice D3 are strict negations, and are inverse with regards
to one another. Not every lattice has strict negations. Therefore, for
instance, there are none in 3D5, but they do exist in 3D4.95

94 A group is a set of elements G, such that if x, y ∈ G, then an operation product
x y is defined–associative, although not necessarily commutative–and there exists an
element I ∈ G with the property I x = x I = x. Also, every element x has an inverse
element x−1 such that xx−1 = x−1 x = I .
95 In 3D4 the strict negation is N = (0 1)(aB)(bD)(cD)(dA)(p r)(q s) which is
also involutory or degree 2.
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It is interesting to note that there are negations–as occurs with the
first four in Hegelian lattice D3– that have elements that match their
negation.

This situation is not new in logic, since modal logics [58] already
possessed central elements. It is also not new to dialectics, and thus
occurs in the classical statements by Heraclitus, such as:

The way up and the way down are one and the same.[45, Diels #108]

For the wool–carder the straight and the winding way are
one and the same. [45, Diels #111]

It is one and the same thing to be living and dead, awake or
asleep, young or old. The former aspect in each case becomes
the latter, and the latter becomes the former, by sudden un-
expected reversal. [45, Diels #113]

All of the cases express a coincidence between an idea and the nega-
tion of this idea. This point of view of Heraclitus’s dialectics poses no
difficulties for the logic we are studying–even if we went to an extreme
and took the coincidence in a strict and literal sense, there are still ele-
ments and negations for which it is verified.

A logic is defined whenever a lattice L and a negation Nare speci-
fied. In this section, we will deal with a collection of lattices and nega-
tions whose informal characterization is that they have logical interest.

Figure 11: Yin-yang dialectics as the product of Boolean logics.

The yin-yang is the producto –see Definitionn 9, page 84– B×B of
two simple Boolean lattices, see Figure 11.
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The distributive property in a lattice has fundamental logical con-
sequences.

Definition 20 A lattice is distributive if, for any three elements
x, y, z, the property x . (y + z) = x . y + x . z is met.

With this definition, the following theorem is valid.

Theorem 22 If a lattice L is distributive, then there is a single strict
negation N with the involutory property NN x = x.

Proof. Let N1 and N2 be two strict negations. It is clear that
N1 a = N1 a . 1 = N1 a . (a + N2 a) = N1 a . a + N1 a .N2 a =
N1 a .N2 a. It then follows that N1 a ≤ N2 a . In a symmetrical man-
ner, we have that N2 a ≤ N1 a , then N2 a = N1 a for every a. Due
to Theorem 19, N−1 is a strict negation. Then N y N−1 match and
N−1a = N a resulting in N2a = a. �

It is worth noting that the reciprocal is not true. As we will see fur-
ther ahead, there are strict involutory negations in non-distributive lat-
tices. It also occurs that in a distributive lattice such as B2 there is a
negation that is not strict, such as the negation N = (0 1).

From a physical standpoint, this establishes that the logic of the
spin, by being non-distributive, cannot be assimilated to a Boolean
logic. This makes for the fundamental “illogic’ of the mechanics of
elementary particles.

Another major conclusion that we will not prove but can be found
in [16], establishes that any Boolean logic of a finite number of ele-
ments is a power Bn of the simple Boolean logic.

Unit functions in dialectic lattices

The study of logical functions is the next step in the construction of a
dialectic. Before analyzing the functions that are of specific interest to
the subject, it is convenient to make a more general analysis of logical
functions. This analysis begins with a major observation. The func-
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tions that can be built in a lattice by means of constant values, variables
and the two operations, are monotonic functions because all of these
operations are as well. In order to construct functions which are not
monotonic, it is necessary to incorporate negations, which are inverse
monotonic functions. This fact stresses the importance of the negation
function.

In order to analyze the structure of logical functions that can be
constructed by means of the two operations and a negation within a
lattice, we will begin by defining unit functions.

Definition 21 A unit functionU(x, a) of a lattice L and an element a
is a function such that for x ∈ L is verified that for x = a,U(x, a) = 1,
and for x 6= a, U(x, a) = 0.

Some important theorems for the lattices studied can be proven
through this definition.

Theorem 23 In every dialectic lattice of rank 1 and degree n > 2, the
functions U(x, 1) and U(x, 0) = U(N x, 1) can be built. For every
element p in the lattice, p 6= 0, 1, the following is valid: U(x, p) =
N U(p . x, 0) . N U(p+ x, 1), where N is a negation.

Proof. The lattice has, at least, three atoms a, b, c, opposite among
themselves, since n ≥ 3. The following function can be constructed:

U(x, 1) = (a . x+ b) . (a . x+ c) . (b . x+ a) . (b . x+ c).

For x = 0 the function has the value U(0, 1) = b . c . a . c = 0. For
x 6= a, b then U(x, 1) = b . c . a . c = 0. For x = a then U(x, 1) =
(a+ b) . (a+ c) . a . c = 0. The same as with a occurs for x = b given
that the function is symmetrical in these parameters. Finally, for x = 1,
U(x, 1) = (a + b) . (a + c) . (b + a) . (b + c) =1. It is clear that the
function U(x, 0) = U(N x, 1) is worth 1 only when N x = 1, then
only when x = 0. The function U(p . x, 0) + U(p+ x, 1) for x = p is
worth 0 and for any dialectic value different from p it is worth 1 given

109



An Inquiry into Dialectic Logic

that p . x = 0 y p + x = 1. For x = 0 it is worth 1 due to the first
summand and for x = 1 it also has value 1 due to the second summand.
Then, the negation of the summand, due to De Morgan, proves the
result. �

Theorem 24 In every dialectic lattice rDn wirh rank 2 ≤ r < n − 1
the unit functionsU(x, 1) yU(x, 0) = U(N x, 1) can be constructed.

Proof. Given M a maximum of the lattice. Due to the condition
of rank, this maximum has at least two logical opposite atoms. In fact,
we will consider the r atoms which are smaller than M . Due to the
property of n, there are at least two atoms outside of this set and due
to how they were obtained, they are logical opposites. If a and b are
these logical opposite atoms of M , then, the following function can be
constructed:

f(x,M) = (M .x+ a) . (a . x+M) . b.

For x = 1, it is worth (M+a) . (a+M) . b = b. If x ≤M , the function
is worth (x + a) .M . b = 0. If x is not comparable ton M , then the
function is worth a . (a . x + M) . b = 0. Let us consider now all the
maximum elements Mi in the lattice and add up all the functions fi,
then:

U(x, 1) = f1(x,M1) + · · ·+ fn(x,Mn)

since for every x 6= 1 it is worth 0 since all the summands are worth
0. For x = 1 it is worth 1 because it is the sum of all the atoms in the
lattice, as needed to be proven. It is clear that the function U(x, 0) =
U(N x, 1) is worth 1 only when N x = 1, lthen only when x = 0. �

Theorem 25 In every dialectic lattice rDn with rank that meets 2 ≤
r < n − 1 the unit functions U(x, p), can be constructed, where p is
any element in the lattice.

Proof. The theorem has already been proven for 0 and 1. Be ai
and Mj respectively, the s atoms and t maximum elements that meet
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ai ≤ p y Mj ≥ p. Given the function:

g(x) = U(a1 . x, 0) + · · ·+ U(as . x, 0).

The function g(x) –which can only take on value 0 or 1– is 0 if all the
summands are 0, for which it must occur that all the products ai . x
must be different from 0. Given that the elements ai are atoms, it must
occur that ai . x = ai that is, x ≥ ai that is, x ≥ a1 + · · · + as = p.
Reciprocally, if x ≥ p the function is worth 0 since all the products
with atoms are different from 0. Contrarily, for every other value of x,
the function is worth 1. Now, given the function:

h(x) = U(M1 + x, 1) + · · ·+ U(Mt + x, 1).

The function h(x) –which can only take on value 0 or 1– is 0 if all
the summands are 0, for which it must occur that all the sums Mj + x
must be different from 1. Given that the elementsMj are maximum el-
ements, it must occur thatMj +x = Mj where it follows that x ≤Mj

that is, x ≤ M1 . · · · .Mt = p. Reciprocally, if x ≤ p the function is
worth 0 since all the summands with maximum elements are different
from 1. If we now have the function:

g(x) + h(x)

This function–which can only take on value 0 or 1–is 0 when it holds
true that a1 + · · · + as = p ≤ x ≤ p = M1 . · · · .Mt. Then, the
only value that meets these inequalities is x = p. Then, the function
U(x, p) = N (g(x) + h(x)) is worth 1 only when x = p, as needed to
be proven. �

One of the consequences of the existence of unit functions is the
possibility of building functions that take on a desired set of values, as
shown in the following theorem.

Theorem 26 If a lattice L has, for every element a, a unit functiona
U(x, a), then any function can be constructed on this lattice, through
the unit functions and logical operations, a function f(x) such that for
each pair of values ai, bi ∈ L then f(ai) = bi.

111



An Inquiry into Dialectic Logic

Proof. If we have a table that equates each of the values ai ∈ L to
the valuer bi ∈ L -including the values 0 and 1 1–, there is a function
f(x) such that f(ai) = bi given by:

f(x) = b1 . U(x, a1) + · · ·+ bs . U(x, as)

which takes on the indicated value, bi for each ai. �

Theorem 27 Given H, a homomorphism that transforms a lattice L
in L’ and given N a negation defined in L. For every element x′ ∈ L’
that is an image of the element x ∈ L, with H:x → x′, a negation N ′

can be defined in L’ as N ′x′ =H:Nx.

Proof. It is clear that every element of L’, since it is an image of
an element of L has a negated element defined. It is only necessary to
prove the De Morgan property for N ′. Let us consider x′, y′ ∈ L, it is
clear by the definition of homomorphism that H:(x + y) → x′ + y′.
Then,N ′(x′+y′)= H:(N(x+y)) = H:(Nx .Ny) = H:Nx .H:Ny =
= N ′x′ . N ′y′. In a dual manner, the dual case is proven. �

Theorem 28 If a lattice L complies with the conditions of Theorems
23 and 24 then it does not have R-homomorphisms except a trivial
one.

Proof. Given H an R-homomorphism. There must be at least two
elements a, b ∈ L such that H:a = H:b for the image of L to have less
elements than L. Due to Theorem 26, a logical function f(x) can be
constructed, by means of the + . N that takes on the values f(a) = 1
y f(b) = 0. The H homomorphism allows us to define the function
f ′(x′) =H:f(x) by the application of the expression f(x) constructed
by the operations + . N , as per Theorema 27. We will then have that
1’= H:f(a) = f ′(H:a) = f ′(H:b) = H:f(b) = 0’, then the homomor-
phism is trivial. �

This theorem shows that the lattices that comply with Theorems 23
and 24 do not have homomorphisms that maintain the logical proper-
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ties but have less elements. They are lattices that construct a logic that
cannot be further “simplified”, the ultimate image of the universal ho-
momorphism that constructs the logic.

It is convenient to define other unit functions that are useful in
constructing logical functions. To that end, we will simply define as
U(x) the unit function U(x, 1).

Theorem 29 The unit function D(x) with value 1 can only be con-
structed if x has a dialectic value.

Proof. It is clear that D(x) = N U(x) . N U(Nx) where N is a
negation, given that N U(x) = 1 for every x 6= 1 and N U(Nx) =
1 for every x 6= 0.Then, the product is worth 1 if and only if it is a
dialectic value. �

For two-variable functions, the specific unit functions that are worth
1 in each of the functional regions indicated can also be constructed.
Table 5 shows the different situations where, for instance, U1d = 1 if
x = 1 and y have a dialectic value.

Table 5: Simple scheme of unit functions.
0 dialectic values 1

0 U00 U0d U01

d
ia

le
ct

ic
va

lu
es

Ud0 Udd Ud1

1 U10 U1d U11

The different functions are defined by the following expressions de-
pending on U,D,N :
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U00 = U(N x) . U(N y) Ud0 = D(x) . U(N y)

U0d = U(N x) . D(y) Udd = D(x) . D(y)

U01 = U(N x) . U(y) Ud1 = D(x) . U(y)

U10 = U(x) . U(N y) U1d = U(x) . D(y)

U11 = U(x) . U(y)

Theorem 30 Every function f(x, y) can be broken down as follows:

f(x, y) = g00 . U00 + gd0 . Ud0 + · · ·+ g11 . U11

where g00, gd0, · · · , g11 are functions of the variables x, y. the func-
tion f(x, y) is invariable in automorphismA, then so are the functions
g00, gd0, · · · , g11.

Proof. In fact, Af(x, y) = f(Ax,A y), must be met, where A
is the automorphism considered. All the unit functions are invariable,
then it must be verified that:

Ag00(x, y) . U00 + · · ·+Ag11(x, y) . U11 =

= g00(Ax,A y) . U00 + · · ·+ g11(Ax,A y) . U11.

Given that this representation is unique in the region considered, it
must occur that Ag00(x, y) = g00(Ax,A y), · · · , A g11(x, y) =
= g11(Ax,A y) and all the functions in the breakdown are also in-
variable in the corresponding area. �

Table 6 presents a simpler notation for the intrinsic functions of
two variables in a dialectic lattice.

The structure of Table 5 can be generalized to the lattices of rank
higher than 1, as shown in Table 7. It is considered that dial1 and dial2
are sets of dialectic elements of equal logical level. The result is general
no matter the number of logical levels in the lattice.

In order to generalize the results it is enough to prove that the
unit functions that appear in the table exist. Some match the previ-
ous, such as U01 and similar, but others are new. If we take the case

114



Negation

Table 6: Truth table of a generic invariant function.
0 dialectic values 1

0 0,1 f1(y) 0,1

d
ia

le
ct

ic
va

lu
es

f 4
(x

)

g(x, y)

f 2
(x

)

1 0,1 f3(y) 0,1

Table 7: Composite scheme of unit functions.
0 dial1 dial1 1

0 U00 U0d1 U0d2 U01

d
ia

l 1 Ud10 Ud1d1 Ud1d2 Ud11

d
ia

l 2 Ud20 Ud2d1 Ud2d2 Ud21

1 U10 U1d1 U1d2 U11

Ud1d2 , as before, this function is the product of the simple functions
Dd1(x) . Dd2(y). To prove the existence of these functions, for in-
stance in the case of the former, we will consider a dialectic element
a, of which we know that the unit function U(x, a). We then have that:

Dd1(x) = U(x, a) + U(x,Aa) + · · ·+ U(x,Apa)

where I = A0, A, . . . , Ap are all the automorphisms in the lattice and,
therefore, they generate all the values of equal logical level as dial1. The
same thing happens for dial2.

As in the simple case, the breakdown of a function–as the sum of
functions by means of unit functions–is unique. In the case of a func-
tion invariant in rotation, each of the composing functions must also
be rotationally invariant.

The group of negations and automorphisms

The following definition establishes the essential quality of the func-
tions defined within a lattice: their invariance in an automorphism.
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Definition 22 Given f(x, . . . , z), a function of lattice L andA a non-
trivial automorphism of the lattice. f is said to be invariant in A if it
is verified that Af(x, . . . , z) = f(Ax, . . . , A z).

This property is equivalent to the following functional diagram (for
the sake of simplicity, it is represented as a single variable):

F

x → F (x)

A ↓ ↓ A

y → F (y)

F

Theorem 31 If function f(x, . . . , z) in a lattice is invariant in A, it
is invariant for every automorphism As.

Proof. It is clear that A (Af(x, . . . , z) ) = Af(Ax, . . . , A z) =
f(A2 x, . . . , A2 z) and so on for the subsequent applications of A. �

An automorphism applied to the arguments of a function yields
the same result as if it were applied it to the result of the function. In
this way, automorphisms–rotations, for example, in the case of dialec-
tic lattices–establish the formal equivalence between their dialectic ele-
ments. This property is essential in the functions used in logic.

Theorem 32 Given f(x, . . . , z) an invariant function in lattice
L. The set of automorphisms that comply with Af(x, . . . , z) =
f(Ax, . . . , A z) is a subgroup of GL.

Proof. Given A and B two automorphisms that meet
Af(x, · · · , z) = f(Ax, . . . , A z) yB f(x, . . . , z) = f(B x, . . . , B z).
Then:

BAf(x, . . . , z) = B f(Ax, . . . , A z) = f(BAx, . . . , B A z).
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It is therefore proven that the product of two automorphisms belongs
to the set. Let us now consider:

Af(A−1 x, . . . , A−1 z) = f(AA−1 x, . . . , AA−1 z) = f(x, . . . , z)

then it is clear that f(A−1 x, . . . , A−1 z) = A−1 f(x, . . . , z), which
proves that the inverse of an automorphism also belongs to the set.
The identity automorphism also belongs to the set. �

It is evident that negations and automorphisms comprise a group
GL of transformations of the lattice as a consequence of Theorem 19.
It follows that a set of very simple properties are obtained from this
group.

The product of strict negations is not necessarily a strict negation.
There are many examples of this. We will introduce a method for com-
posing lattices which is specific to dialectics.96

Definition 23 If we consider two lattices (disjointed, with no common
elements), L1 and L2. A dialectic composition, or simply compo-
sition of two lattices L1 and L2 refers to the lattice L1

⊎
L2 made up

of all the elements in each lattice, with its own relations of order, but
sharing the elements 0 and 1, as shown in Figure 12.

Figure 12: Dialectic composition of lattices L1 and L2.

As follows from this, each lattice keeps all of its properties of nega-
tion, isomorphism and homomorphism, they only go on to share the
external elements. The dialectic composition

⊎
can be extended to n

lattices and it is a commutative and associative operation.

96 This method of lattice composition is unusual in mathematics.
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It then follows that the group GL of the composition of two lattices
that have groups GL1 and GL2 is the direct product of groups GL1 ×
GL2 . In some way, an inverse result exists.

Theorem 33 IfN is a negation in a lattice L, then automorphismA =
N N , which transforms an atom into an atom of the lattice, generates
a replacement S between the atoms, that defines a set of sub-dialectic
lattices Li such that their composition matches L=L1

⊎
· · ·
⊎

Ls.

Proof. S is a replacement between the atoms, and, as such, is the
direct product of several partial replacements between them. Given
S = S1×· · ·×Ss where each replacement Si has a single cycle. Atoms
aj i ∈ Si generate a lattice Li by successive additions between them.
The uppermost elements obtained by negation are also a part of it. The
negationN is a negation between the elements of this sub-lattice which
is strict. Then, Li is a dialectic lattice–because it has a strict negation
and each element is the sum of its atoms or a product of its maximum
elements–which has a group GPi which is a direct factor of the group
GP de L. By the successive application of this procedure, the various
sub-lattices that make up L can be found. �

It is worth noting that the theorem does not establish that N –or its
derivativesA or S– determine the lattice, it only establishes its nature as
a composite. In fact, lattices 2D5 and 3D5 generate the same replace-
ment S among their five atoms, a rotation of the five elements, and,
however, the lattices are not equal.

It is also worth pointing out a special characteristic of rank-1 di-
alectic lattices. As an example, although one which is, in general, valid,
we will consider lattice D5 and the strict negationN = (0 1)(a b)(c d e).
By applying the previous result, it is shown that the relation D5 = D2⊎

D3. is met. This can be generalized in many other ways to (almost)
all rank-1 dialectic lattices.

This type of lattice composition may be of interest when applying
dialectics to the relationships between many apparently contradictory
scientific theories. A commentary on this condition appears further
ahead, towards the end of the book.
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Negations in Dn

The alphabetic notation will (almost) always be used for the elements
–a, b, · · · – despite the fact that this suggests an order that the lattice
atoms do not have. Occasionally, for D3 we will use the Hegelian nota-
tion t, a, s.

This case is very special and very simple. Every permutation of the
atoms generates a negation, with the simple addition of transforming
0 and 1 between each other. In fact, if a and b are two different atoms,
a . b = 0 and a+b = 1. Any permutationN transforms a, b into atoms
N a and N b, which are also different, and the De Morgan property
occurs in a trivial manner.

Regardless of this, we must make a distinction for the common
negations, Nk, which establish the rotation of the atoms–once an or-
der is chosen between them–displacing k atoms in one direction or
another.97 All the other negations are called exotic negations. In the
following sections, the reason for this distinction will be understood..

Negations in 2Dn

In what follows, two notations will be used for the lattice elements, as
shown in Figure 13. We will refer to the alphabetic notation, as that
which uses lower case letters for atoms and upper case for maximum
elements. We will refer to the mathematical notation, as that which uses
di for atoms and y Di for maximum elements. The notation that uses
letters in alphabetical order is simpler for truth tables, the notation that
uses sub-indexes is useful in proving the properties of some functions.

The mathematical notation is used so that expressions in 2Dn are
easier to interpret. Therefore, rotations are expressed as Rk di = di+k

for direct rotations and R−k di = di−k for the reverse rotation.98 In-
dexes are numbered 0, 1, . . . , n − 1 y and all the operations are n-

97 The existence of a rotation is suggested by the Greek elements and the double rota-
tion by the Chinese elements.
98 Naturally, the direction of rotation, either the reverse or direct, are conventional,
this depends on the way how lattice elements are indexed and it is not absolute. For
example, if the maximum element to the “right” of the atom of index 1 is 4, there
would simply be a displacement constant in all the equations that follow, but the end
result would not change.
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module. Ultimately, it can be considered that k has a sign. The rotation
is similar for maximum elements. Unlike lattices of rank r = 1, these
lattices have natural, well-defined rotations. This also occurs for ranks
greater than 2.

Figure 13: The two notations used in 2Dn.

The systematic search for negation functions using a computer leads
to 2n results which are expressed by two different lists, the list of com-
mon negations:99

• N0 di = Di N0Di = di+1

• N1 di = Di+1 N1Di = di+2

• · · ·
• Nn−1 di = Di+n−1 Nn−1Di = di

and the list of exotic negations, represented by Ñ , is:

• Ñ0 di = Dn−i Ñ0Di = dn−i

• Ñ1 di = Dn−i+1 Ñ1Di = dn−i+1

• · · ·
• Ñ(n−1) di = Dn−i+n−1 = D−i−1 Ñ(n−1)Di = d−i−1.

All the operations and numberings are n-module. These results are
combined in the following theorems.

99 When I had finished writing on this subject, Rafael Grompone suggested that I
should add 1 to the indexes so that Nn−1 would go on to be N0 and also to the lat-
tice indexes. In this way, a more coherent and symmetrical nomenclature is obtained.
Since this modification implies reviewing a great deal of material, this will be addressed
in a later version.
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Theorem 34 The n common negations in 2Dn correspond to the fol-
lowing equations (the operations are n-module):

Nk di = Di+k NkDi = di+k+1.

Proof. We intend to prove that these transformations comply with
the De Morgan property. It is clear that the product of two differ-
ent atoms is 0 and the sum of two maximum elements is 1. Then,
Nk(di . dj) = Nk 0 = 1 = Di+k + Dj+k = Nk di + Nk dj and De
Morgan is met. This is proven in a dual manner for the maximum el-
ements. Given the sum of two non-contiguous atoms, it occurs that
Nk(di + dj) = Nk 1 = 0 = Di+k . Dj+k = Nk di . Nk dj given that
the maximum elements are also not contiguous. The same is valid in
a dual manner for the maximum elements. If the atoms are contigu-
ous, then Nk(di + di+1) = NkDi = di+k+1 = Di+k . Di+k+1 =
Nk di . Nk di+1 and De Morgan is met. We still need to prove the
case of a contiguous atom and maximum element. If Nk(di . Di) =
Nk di = Di+k = Di+k + di+k+1 = Nk di +NkDi and De Morgan is
met. If considering the other case of contiguous elementsNk(di+1 . Di) =
Nk di+1 = Di+k+1 = Di+k+1 + di+k+1 = Nk di+1 + NkDi, it is
also met. In the case of the sum, we have Nk(di + Di) = NkDi =
di+k+1 = Di+k . di+k+1 = Nk di + NkDi, and it is met. Finally, for
Nk(di+1 +Di) = NkDi = di+k+1 = Di+k+1 . di+k+1 = Nk di+1 +
NkDi, it is met. �

Theorem 35 The exotic n negations in 2Dn correspond to the follow-
ing equations (the operations are n-module):
Ñk di = Dn−i+k ÑkDi = dn−i+k.

Proof. The demonstration for exotic negations is done following
along the lines of the previous theorem. In the case of the product of
two different atoms, the sum of two different maximum elements or
non-contiguous cases, De Morgan follows, just like before. For two
contiguous atoms, the following occurs Ñk(di + di+1) = ÑkDi =
dn−i+k = Dn−i+k−1 . Dn−i+k = Ñkdi+1 . Ñkdi and De Morgan is
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met. For a contiguous atom and maximum element, if Ñk(di . Di) =
Ñk di = Dn−i+k = Dn−i+k + dn−i+k = Ñk di + ÑkDi, De Mor-
gan is met. For the other contiguous case, the same thing occurs. In
the case of the sum, we have Ñk(di + Di) = ÑkDi = dn−i+k =
Dn−i+k . dn−i+k = Ñk di . ÑkDi and it is met. Similarly, for the other
contiguous case it is also met. �

The application of a rotation to a common negation is an impor-
tant case which is introduced in the following theorem.

Theorem 36 For common negations in 2Dn, the following equations
are valid: RkNj = Nj Rk = Nj+k. The operations are n-module
and k can be negative.

Proof. Let us considerRkNj di = RkDi+j = Di+j+k = Nj+k di.
ButNj Rk di = Nj di+k = Di+j+k, then this matches the previous re-
sult. For maximum elements something similar happens: RkNj Di =
Rk di+j+1 = di+j+k+1 = Nj+kDi. But Nj RkDi = Nj Di+k =
di+j+k+1, ias in the previous case. The same property is valid in the
case of a negative k since the rotation equation is unique. �

As a result of this theorem, a common negation turns into another
due to a rotation of the lattice elements, since the transformation equa-
tion R−kNj Rk = Nj is valid. The product–successive application–of
two common negations is a rotation.

Theorem 37 For exotic negations in 2Dn the following equations are
valid: Rk Ñj = Ñj R−k = Ñ(j+k). The operations are n-module
and k can be negative.

Proof. The case of exotic negations is exactly the same. Let us
consider Rk Ñj di = RkDn−i+j = Dn−i+j+k = Ñ(k+j) di. But

Ñj R−k di = Ñj di−k = Dn−i+k+j = Ñ(j+k) di. The demonstra-
tion is the same for maximum elements. Then, it is proven. As in the
previous case, k can be negative. �

This result and the one obtained in 3Dn do not contradict The-
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orem 19. There, it was established, for example, that Rk Ñj R
−1
k is a

negation. In fact, Rk Ñj R
−1
k = Ñj R−k R

−1
k = Ñj R−2k = Ñ(j+2k).

Exotic negations are transformed in a special manner among them-
selves by the rotations. It is also interesting to consider the product of
two negations.

Theorem 38 The product–successive application–of two negation in
2Dn is, depending on the case: NiNj = Ri+j+1, Ñi Ñj = Ri−j ,
Ni Ñj = Si+j+1 and Ñj Ni = Sj−i. The operations are n-module.

Proof. Let us consider NiNj dk = NiDj+k = di+j+k+1 =
Ri+j+1 dk. In the caseNiNj Dk = Ni dj+k+1 = Di+j+k+1 = Ri+j+1Dk,
then the first equation is met. In exotic negations it is:
Ñi Ñj dk = ÑiDn−k+j = dn−(n−k+j)+i = dk−j+i = Ri−j dk and

Ñi Ñj Dk = Ñi dn−k+j = Dn−(n−k+j)+i = Dk−j+i = Ri−j dk, then
the second equation is met. Let us consider

Ni Ñj dk = NiDn−k+j = dn−k+j+i+1 = Si+j+1 dk.

In the case of Ni Ñj Dk = Ni dn−k+j = Dn−k+j+i = Si+j+1Dk,
then the third equation is met. Let us now consider

Ñj Ni dk = Ñj Dk+i = dn−(k+i)+j = Sj−i dk.

If we consider Ñj NiDk = Ñj dk+i+1 = Dn−(k+i+1)+j = Sj−iDk,
then the fourth equation is met. �

A consequence of this theorem is that Ñi Ñi = R0 = I where I is
the identity. Exotic negations are involutory. The structure of the group
GL of transformations of the lattice 2Dn is made up of the n rotations,
the n simmetries, the n common negations and the n exotic negations
which are involutory.

Theorem 39 The product–successive application–of a negation and
a simmetry in 2Dn is, depending on the case: SjNk = Ñj−k−1,
NkSj = Ñj+k, SjÑk = Nj−k−1 and Ñk Sj = Nk−j . All the opera-
tions are n-module.
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Proof. Let us consider

SjNk di = SjDi+k = Dn−(i+k)+j−1 = Ñj−k−1di.

Consideremos SjNkDi = Sjdi+k+1 = dn−(i+k+1)+j = Ñj−k−1Di,
then the first equivalence is proven. If we considerNkSjdi = Nk dn−i+j =
Dn−i+j+k = Ñj+k di. If we consider

NkSjDi = NkDn−i+j−1 = dn−i+j−1+k+1 = Ñj+kDi,

then the second equivalence is proven. Let us consider

SjÑk di = SjDn−i+k = Dn−(n−i+k)+j−1 = Di−k+j−1 = Nj−k−1 di.

If we consider

SjÑkDi = Sj dn−i+k = dn−(n−i+k)+j = di−k+j = Nj−k−1Di,

then the third equivalence is proven. Let us consider

Ñk Sj di = Ñk dn−i+j = Dn−(n−i+j)+k = Di−j+k = Nk−j di.

If we now consider

Ñk Sj Di = ÑkDn−i+j−1 = dn−(n−i+j−1)+k = di−j+k−1 = Nk−j Di,

then the fourth equivalence is proven. �
This theorem completes the operations in the group GL of auto-

morphisms and negations of the lattice L.

An interesting observation to make is that there are common nega-
tions which are involutory. For this, it is enough to note that NiNi =
R2i+1. Then, the condition for Nj to be involutory is that 2i + 1 = 0
(n-module) and this has a solution for an uneven n. Therefore, for
example, in 2D5 the negation N2 = (01)(aC)(bD)(cE)(dA)(eB) is
involutory.
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Figure 14: The two notations used in 3Dn.

Negations in 3Dn

The Figure 14 shows the notation used in 3Dn lattices as an exten-
sion of the 2Dn case: the symbols Ci are used for the central values–
the mathematical notation–instead of the alphabetic notation p, q, r, . . .
which is more compact for presenting the truth tables of the functions.

A software program performs a systematic search to find negations
in 3Dn. As in the previous case, these are divided in two groups of
n negations each: regular negations and exotic negations. Common
negations in the 3Dn case are:

• N0 di = Di N0Ci = Ci+1 N0Di = di+2

• N1 di = Di+1 N1Ci = Ci+2 N1Di = di+3

• · · ·
• Nn−1 di = Di+n−1 Nn−1Ci = Ci Nn−1Di = di+n+1.

In summary, the general expression for common negations, in the gen-
eral case, is:

Nj di = Di+j Nj Ci = Ci+j+1 Nj Di = di+j+2

where all the operations are performed in n-module. The negation
Nn−1 corresponds to a symmetry of the lattice around the central val-
ues and is involutory. Thus, for example, Nn−1 dj = Dn−1+j . If we
apply once againNn−1Dn−1+j = dn−1+j+n−1+2 = d2n+j = dj . The
central values,Nn−1Ci = Cn−1+i+1 = Ci, remain unaltered.

The exotic negations in the 3Dn case are:
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• Ñ0 di = Dn−i Ñ0Ci = Cn−i Ñ0Di = dn−i

• Ñ1 di = Dn−i+1 Ñ1Ci = Cn−i+1 Ñ1Di = dn−i+1

• · · ·
• Ñ(n−1) di = D−i−1 Ñ(n−1)Ci = C−i−1

Ñ(n−1)Di = d−i−1.

In summary, the general expression of the exotic negations is:

Ñj di = Dn−i+j Ñj Ci = Cn−i+j Ñj Di = dn−i+j

where all the operations are performed as n-module. Of course, it
is necessary to prove that these expressions meet De Morgan. This
demonstration will be omitted since it does not contribute much to
the one presented for 2Dn.

Theorem 40 For common negations in 3Dn, the following equations
are valid: RkNj = Nj Rk = Nj+k. The operations are n-module
and k can be negative.

Proof. Given RkNj di = RkDi+j = Di+j+k = Nj+k di. Given
RkNj Ci = Rk Ci+j+1 = Ci+j+k+1 = Nj+k Ci. Given RkNj Di =
Rk di+j+2 = di+j+k+2 = Nj+kDi. If we consider the product back-
wards, we have that Nj Rk di = Nj di+k = Di+j+k, as in the previ-
ous product. In the same way, it occurs that Nj Rk Ci = Nj Ci+k =
Ci+j+k+1 and Nj RkDi = Nj Di+k = di+j+k+2, as needed to be
proven. �

This theorem shows that common negations are unchanged by the
lattice rotations..

Theorem 41 The product–successive application–of two negations in
3Dn, is, depending on the case: NiNj = Ri+j+2 and Ñi Ñj = Ri−j .
The operations are n-module.

Proof. Given NiNj dk = NiDj+k = di+j+k+2 = Ri+j+2 dk.
Given NiNj Ck = NiCj+k+1 = Ci+j+k+2 = Ri+j+2Ck. Given
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NiNj Dk = NiDj+k+2 = di+j+k+2 = Ri+j+2 dk, then it is proven
for common negations. Given Ñi Ñj dk = ÑiDn−k+j = dn−(n−k+j)+i =
dk+i−j = Ri−j dk. The same thing happens in the other cases since the
transformations are equal, then, it is proven. �

Then, all exotic negations are invocatory–since Ñi Ñi = R0 = I–
as in 2Dn. A common involutory negation also exists if 2i + 2 = 0
(n-module).

As in the previous case, Theorem 39, is met, the demonstration is
the same and is omitted.

Overview of the group of automorphisms and negations

This section summarizes the different results obtained with regards to
automorphisms and negations in rDn lattices. In Table 8 the results
obtained in Theorems 2, 8, 9, 36, 37, 38 and 39, are repeated in an or-
derly fashion, as proven for 2Dn. The result is understood to be the
successive application of the row element and then of the column ele-
ment.

Table 8: Successive application of automorphisms and negations.
× Rk Sk Nk Ñk

Rj Rj+k Sj+k Nj+k Ñj+k

Sj Sj−k Rj−k Ñj−k−1 Nj−k−1

Nj Nj+k Ñj+k Rj+k+1 Sj+k+1

Ñj Ñj+k Nk−j Sj−k Rj−k

The demonstrations extend naturally to rDn lattices by recurrence,
as has been exemplified in some cases of 3Dn.
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Introduction

Spontaneous dialectics and Hegel’s attempt at formalization introduce
two new notions which are foreign to binary logic: the unity and strug-
gle of opposites–also called penetration of opposites–and the notion of
becoming. These ideas have been intuitively introduced in the initial
chapters. To binary logic, the existence of opposites evidences the false-
ness of a theory–they cannot coexist. The same happens with becom-
ing: logical statements are eternal and unchangeable. Nothing can be
true today and false tomorrow.

What are, then, the penetration of opposites and becoming? They
are logical functions with two variables defined within dialectic lattices.
These functions convey the unity and struggle of opposites and the
negation of a negation, to use Hegelian language. They also describe,
respectively, synchronic and diachronic opposites, while extending the
meaning of binary logical functions. This means that, when 0 and 1
are applied to the values, they must only yield 0 or 1 as a result, that
is to say, they must match known binary logical functions. This first
condition can be referred to as the principle of permanence of binary
properties or simply, the principle of permanence, abbreviated as PP.

A second consideration is valid. Given that dialectic lattices have
rotations, as derived from the definition of dialectic lattices, it is neces-
sary that the rotations in these dialectic functions be invariable. If this
is not so, there would be privileged dialectic values, which would con-
tradict the evidence of the symmetry generated by the rotations. This
second condition is called rotation invariance, abbreviated as RI.

When searching for penetration functions, aside from the princi-
ples of permanence and rotation, we must consider the formal proper-
ties derived from the spontaneous application of these notions, as oc-
curs in the different examples cited when we introduced natural dialectics.
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Overview on dialectic penetration

Let us now analyze some cases of penetration as used in the natural
languages. This use, possible allows us to extract the formal proper-
ties they comply with from a dialectic standpoint. We will begin by
adversative conjunctions.

Love sonnets show yet another aspect of dialectic penetration. We
will consider Lope’s statement, but introducing slight changes in pre-
sentation:

to faint, to dare, to be enraged, coarse, tender, liberal, elu-
sive, encouraged, mortal, dead, alive, loyal, traitor, cow-
ard, brave

Let us now formalize the penetrations by way of associations. It
seems clear that the idea expressed is the following:

(to faint, to dare, to be enraged), (coarse, tender), (liberal,
elusive, encouraged), (mortal, dead, alive), (loyal, traitor),
(coward, brave)

We can see that there are opposite pairs–such as (loyal, traitor) or
(venturesome, repressed)–, but there are also triads of opposites, such
as (to faint, to dare, to be enraged) or (mortal, dead, alive). In this
example, it is undoubtable that logical penetration is commutative: the
order of the terms does not matter in any of the cases. The analysis of
the triple cases demands some additional considerations that are pre-
sented further ahead.

On the other hand, it also seems to be clear that in this text there
might be two types of commas: some replace the dialectic penetration
and the others–those that join pairs or triads of opposites–could either
be an AND or an OR function, or even a commutative penetration.
This matter calls for further analysis. If we believe they stand in place of
AND, the phrase states that love contains all the contradictions, some-
thing which is truly exaggerated. If we believe them to stand for OR,
the phrase states that it is enough to have some of the contradictions
in the list in order to define love. However, it seems that neither AND
nor OR are being conveyed, but a logical function that lies somewhere
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in between the two, one that is not as strong as AND or as loose as OR.
This is why it also seems that the second type of commas replace a pen-
etration, which is forcefully commutative, aside from associative.

Let us now examine the problem of contrary triads. For a triad
to make sense, it is necessary that the penetration be–at least in some
cases–associative; otherwise, it would not make sense.100 Thus, for ex-
ample, the order of the triad is not important and this calls for the two
properties, commutative and associative, to be valid in the unity and
struggle of opposites.

Intuitively, we can define the penetration as a function that meets
the following properties:

• is associative (A) and commutative (C),

• meets the principle of permanence (PP) of binary properties,

• its elements are rotationally invariant (RI),

• is a dialectic function which is halfway between OR and AND,has
the dialectic penetration property (DP).

This last property adds a new formal element. Given that x . x =
x + x = x, we must add to this set of properties that the function is
idempotent (I).

Table 9: General scheme of the penetration functions.
0 dialécticos 1

0 0 f1(y) 0, 1

d
ia

lé
ct

ic
o

s

f1(x) g(x, y) f2(x)

1 0, 1 f2(y) 1

100 Lope’s example also shows the limits of the associative property. It is difficult to
accept this equality: (to faint, to dare, to be enraged), (coarse, tender), (liberal, elusive,
encouraged), (mortal, dead, alive), (loyal, traitor), (coward, brave) = (to faint, to dare),
(to be enraged, coarse), (tender, liberal, elusive), (encouraged, mortal), (dead, alive,
loyal), (traitor, coward, brave). This suggests that the two types of commas are different
penetration functions. This is clarified in what follows.
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Table 9 presents the general scheme of a penetration function. The
function g(x, y) is the essential part of the function and has properties
I, A, C and DP. The values corresponding to 0∗0 = 0 and 1∗1 = 1 are
a consequence of idempotency. Functions f1, f2 also have properties I,
A, C and DP, PP is evident.

The below shows that there are two types of penetration functions
which we have referred to as ample penetrations and strict penetrations.
Ample penetrations comply with the DP property for every pair of lat-
tice elements and are important to the notion of quantifiers. Strict pen-
etrations comply with the DP property only when the penetration of
opposites is a thesis. This second type of penetrations is important,
as are quantifiers, due to its connection to the notion of becoming of
opposites.

General property of dialectic penetrations

The generic property of the penetration function consists in having a
logical value that is intermediate to the AND and OR functions. In
order to define it, a set of formal and semantic properties must be met.
The purpose of this section is to analyze these properties.

The starting point is a set of auxiliary theorems prior to the formal
definition of the penetration function.101 For this, it is necessary to
introduce the notion of semi-lattice.102

101 The theorems considered are known results, see Birkhoff [4, II, 3, Ex.1], but spe-
cialized on semi-lattices.
102 In this case, a � operation is used, which has the formal properties of the sum within
a lattice. A dual semi-lattice can also be defined by means of a� operation that has the
formal properties of a product. Performing a symmetry of the lattice’s structure yields
the same case.
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Definition 24 A set of S elements is a semi-lattice if, for every pair
x, y of its elements, there is an operation x � y ∈ S with the properties:

1. Idempotency (I). It is met that x � x = x.

2. Associative (A). It is met that (x � y) � z = x � (y � z).

3. Commutative (C). x � y = y � x.

In a semi-lattice with a non-trivial � operation103 that has the prop-
erties I, A, C, a partial order can be defined (which justifies the name
of semi-lattice).

Theorem 42 If � is a non-trivial operation, among elements of a set S,
which has the properties I, A, C, then it is a partially ordered set which
has the relation x ≤ y is defined as x � y = y. The + operation is
defined by x+ y = x � y.

Proof. The relation x ≤ y defined as x � y = y is an order relation
because it meets: 1) idempotency due to property I; 2) if x ≤ y and
y ≤ x, then we have x = x � y = y; 3) transitivity, because if x ≤ y
and y ≤ z then x � y = y, y � z = z, but due to property A, then it
occurs that x�z = x�(y�z) = (x�y)�z = y�z = z then x ≤ z. We
still need to prove that if z ≥ x, z ≥ y then z ≥ x+ y = x � y –that is,
z = z � (x � y)–for x+ y to be the minimum upper limit. Due to the
hypothesis, z = z � x, z = z � y then z = (z � x) � y = z � (x � y) due
to A, as needed to be proven. �

The reciprocal theorem is also valid.104

103 The operation is trivial if it meets that for every pair of elements x 6= y, x � y = a
holds true, where a is always the same element in the set.
104 The dual theorems in which an operation x . y = x � y and the relation x ≤ y
defined as x � y = x. The demonstrations are done in a dual way. Regardless of this,
in the applications we will always consider the case of the sum.
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Theorem 43 If S is a semi-lattice for the +, operation, then the � op-
eration defined x � y = x+ y has the properties I, A, C.

Proof. The demonstration follows immediately from this: 1) the
operation + is idempotent; 2) the operation + is associative; 3) the
operation + is commutative. �

Ample penetrations

Having established these results, it is now possible to define the pene-
tration function in a general manner.

Definition 25 An ample penetration function, or simply penetra-
tion, refers to a binary operation in a lattice L, expressed as x ∗ y,
where x, y ∈ L, complying with:

1. the formal properties I, A, C;

2. the principle of permanence of binary properties PP;

3. rotational invariance (RI): if x ∗ y = z then, if R is a lattice
rotation, Rx ∗Ry = Rz holds true.

4. Dialectic penetration (DP): two elements x, y comply with
x . y ≤ x ∗ y ≤ x+ y.

The following theorem links the penetration function with the com-
mon negations.

Theorem 44 If ∗ is a penetration function in a dialectic lattice andN
is a common negation, then the function defined as ∗n = N−1(N x ∗
N y) also defines a penetration. This function is independent from the
negation N used.

Proof. Let us consider the properties in order.

133



An Inquiry into Dialectic Logic

I The function defined is idempotent given thatN−1(N x∗N x) =
N−1N x = x.

C It is commutative, given that N−1(N x ∗ N y) = N−1(N y ∗
N x).

A It is associative, given that (N x∗N y)∗N z = N x∗(N y∗N z)
due to the A property of ∗. Introducing N N−1 –the identity–
we obtain N N−1(N x ∗ N y) ∗ N z = N x ∗ N N−1(N y ∗
N z). By adding parentheses for purposes of clarity and applying
N−1 we have N−1(N (N−1(N x ∗N y)) ∗N z) = N−1(N x ∗
N (N−1(N y ∗N z))), which is the expression of the A property
for the function defined.

RI It is rotational invariant given thatN−1(RN x∗RN y) = N−1R(N x∗
N y) = RN−1(N x ∗ N y) because common negations com-
mute with R.

DP N x .N y ≤ N x ∗ N y ≤ N x + N y holds true because of
the DP property of ∗. By applying the negation N−1 to these
relations, we obtain x + y ≥ N−1(N x ∗ N y) ≥ x . y, which
proves DP for the function defined.

Every common negation can be expressed as N = N0R
i and N−1 =

N0R
n−i. Then N−1(N x ∗N y) = Rn−iN−10 (RiN0 x ∗ RiN0 y) =

Rn−iN−10 Ri(N0 x ∗N0 y) = N−10 (N0 x ∗N0 y), given that the pene-
trations comply with RI, then the function defined is independent from
the common negation used. This result depends on the commutative
property of the common negations with the rotations. �

The ample penetration functions are also defined through the fol-
lowing definition.

Definition 26 The ample penetration function ∗ in the dialectic lat-
tice L is defined as: for x, y < 1 then x ∗ y = x . y, for every x then
x ∗ 1 = 1 ∗ x = 1.
The ample penetration function ∗n is defined as: for x, y > 0 then
x ∗n y = x+ y, for every x then x ∗n 0 = 0 ∗ nx = 0.
In an equal manner, ∗n can be defined by theorem 44.
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Definitions 25 and 26 match, as shown by the following thorem.

Theorem 45 The two definitions of ample penetrations, 25 and 26,
are equivalent.

Proof. Definition 26 complies with Definition 25. We can prove
the properties in order:

I holds true due to the idempotency of the sum and of the product.

C holds true due to the commutative property of the sum and of
the product and due to the explicit definitions in cases 0 and 1,
respectively.

A holds true due to the associative property of the sum and of the
product. For case 1, if one or more of the intervening values
is 1, the result is 1 no matter how they are associated; thus, for
example, x ∗ (y ∗ 1) = x ∗ 1 = 1 and (x ∗ y) ∗ 1 = (x . y)∗1 =
1. The other cases are similar and the same is valid for ∗n and 0.

RI holds true because the sum and product are rotational invariant,
so are 0 and 1.

DP holds true by definition. Therefore, for example, x . y ≤ x ∗ y =
x + y ≤ x + y. For case 1, it occurs that x = x . 1 ≤ x ∗ 1 =
1 ≤ x+ 1 = 1.The same is valid for ∗n and 0.

Definition 25 complies with Definition 26. Let us now consider the
semi-lattices in Figure 15 made up of elements 0 and 1 and the set D
of their dialectic values or their negation ND. Because of its structure,
it is a set that is partially ordered by an operation ≤ of the elements of
the dialectic lattice.

According to Theorem 42 that refers to the properties of the func-
tions with properties I, A, C, these functions are a sum in a semi-lattice
defined by this penetration. Let us consider the case of each semi-
lattice. We will analyze the properties in order:

I: follows immediately, as do A and C, given that the sum has these
properties.
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RI: is valid because D is rotational invariant.

DP: holds true due to an adequate choice of the opposites, as can be
seen in the examples that follow.

Then, the theorem is proven. �

Figure 15: Semi-lattices for ample penetration functions.

Let us consider two penetration functions, ∗′, ∗′′ in a lattice. With
these, it is possible to build ample penetration functions–which do not
meet the associative property–by means of the sum.

Theorem 46 The function defined as x ∗ y = x ∗′ y + x ∗′′ y –where
∗′ and ∗′′ are penetrations that meet I, C, A, RI and DP–is an ample
penetration complying with I, C, RI and DP but not A.

Proof. Properties I, C follow immediately, given that both ∗′ and
∗′′ comply. The same occurs with the RI property because each of them
comply with it and the sum also meets RI. Given now x, y, the follow-
ing inequalities are met:

x . y ≤ x ∗′ y ≤ x+ y x . y ≤ x ∗′′ y ≤ x+ y.

Given, for example,, x . y ≤ x ∗′ y and x . y ≤ x ∗′′ y, from here
x . y ≤ x ∗′ y + x ∗′′ y can be deduced due to the monotony of the
sum. The other inequality is proven in a dual manner. The “sum” of
penetrations does not meet A because in 3Dn –see Table 12– (a ∗ b) ∗
p = (0 + 0) ∗ p = 0 is met due to DP. Conversely, a ∗ (b ∗ p) =
a ∗ (0 + p) = a ∗ p = p + 0 = p, with which it is proven by way of a
counterexample. �
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Ample penetrations in Dn

Rank-1 penetration functions have very simple properties, something
which does not occur in the higher ranks. A systematic search for the
functions, aside from AND, OR, shows that only two functions are pre-
sented in Table 10.

As per Theorem 45, there are two semi-lattices in Dn whose sums
generate these functions. Figure 16 illustrates them for case D4.

Figure 16: Semi-lattices for penetration functions in D4.

This diagram illustrates Theorem 44. If a negation N is applied to
one of the semi-lattices, the other is obtained. In fact, the four elements
become themselves and values 0 and 1 are exchanged. These penetra-
tions are symmetrical. The way in which the functions are generated
allows us to make a generalization for lattices of a higher rank.

Table 10: Tables of dialectic penetrations in D4.
∗ 0 a b c d 1

0 0 0 0 0 0 1

a 0 a 0 0 0 1

b 0 0 b 0 0 1

c 0 0 0 c 0 1

d 0 0 0 0 d 1

1 1 1 1 1 1 1

∗n 0 a b c d 1

0 0 0 0 0 0 0

a 0 a 1 1 1 1

b 0 1 b 1 1 1

c 0 1 1 c 1 1

d 0 1 1 1 d 1

1 0 1 1 1 1 1

Ample penetrations in 2Dn

Penetration functions in 2Dn can be obtained from Theorem 45 and
from the observations made for case D4. Figure 17 presents two semi-
lattices which generate the penetration functions. These penetrations
are symmetrical.
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Figure 17: Semi-lattices for penetration functions in 2D4.

Figure 18: Diagram relating sum, product and penetrations.

A general observation must be made that applies to the penetra-
tions analyzed. The relations established in the definition allow us to
elaborate the diagram in Figure 18. The order relation lets us construct
a lattice D2 that establishes these relations. As immediately follows,
this lattice—which builds a ying-yang dialectics—has a negation that
transforms sum and product into themselves and also ∗ into ∗n. It fol-
lows that Theorem 47 is met. These results are of interest in analyzing
dialectic quantifiers. Please refer to the corresponding chapter.
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Table 11: Tables of dialectic penetrations in 2D4.
∗ 0 a b c d A B C D 1

0 0 0 0 0 0 0 0 0 0 1

a 0 a a a 1

b 0 b b b 1

c 0 c c c 1

d 0 d d d 1

A 0 a b A b a 1

B 0 b c b B c 1

C 0 c d c C d 1

D 0 a d a d D 1

1 1 1 1 1 1 1 1 1 1 1

∗n 0 a b c d A B C D 1

0 0 0 0 0 0 0 0 0 0 0

a 0 a A 1 D A 1 1 D 1

b 0 A b B 1 A B 1 1 1

c 0 1 B c C 1 B C 1 1

d 0 0 1 C d 1 1 C D 1

A 0 A A 1 1 A 1 1 1 1

B 0 1 B B 1 1 B 1 1 1

C 0 1 1 C C 1 1 C 1 1

D 0 D 1 1 D 1 1 1 D 1

1 0 1 1 1 1 1 1 1 1 1

Table 11 presents truth tables for the corresponding penetration
functions. This lattice-based generation is common to all rDn lattices.
For the sake of clarity, zeros are omitted in dialectic values.

Theorem 47 Ample penetration functions meet the following:

x ∗ y = x . y + U(x, 1) + U(y, 1)

x ∗n y = (x+ y) . U(x, 0) . U(y, 0)

where U(x, a), and likewise for y, are the unit functions, Definition
21.
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Proof. Let us consider the case ∗n. Due to the definition, it is clear that
for 1 or for dialectic values, x∗ny = x+y is valid. Conversely, for those
same values, x ∗n 0 = 0 is met, then it is clear that the second equality
is met given that N U(x, 0) is 1 for every x 6= 0 and 0 for x = 0. The
same happens with N U(y, 0). Then, the second equation is proven.
The first is a consequence of the demonstrated, applied toNx,Ny and
of Theorem 44 which leads to x . y + U(Nx, 0) + U(Ny, 0) and is
equivalent to the first equation. The first equation is proven. �

It follows that this theorem is valid in Dn and also in the general
case, rDn, due to how penetration functions are constructed.

Ample penetrations in 3Dn and subsequents

Penetrations in 3Dn and in more complex lattices follow the same
scheme as the previous cases. Table 12 introduces penetration ∗. Pen-
etration ∗n is obtained through transformation by means of any nega-
tion of the lattice, see Theorem 44. 0 values are omitted in the dialectic
area.

Lattice 3D5 and subsequents also meet the condition of symmet-
rical penetrations. The diagram in Figure 18 and Theorem 47 are also
met.

Strict penetrations in 3Dn and subsequents

Theorem 47 clearly shows that ample penetrations are only a slight
modification of lattice operations. The intuitive notion of penetration
seems to call for functions with more demanding properties. This oc-
curs with strict penetrations, the topic of study of this section.

3Dn lattices are the simplest in which strict ∗̄ penetration func-
tions can be defined. This is a new penetration function which can
be defined and its importance lies in its connection to the becoming
function. These functions are generated via a new order in the dialectic
elements.

We will analyze the 3D5 case as an example of the general func-
tion. Figure 29 presents the notation used–in this case, the alphabetical
notation.

If we consider the values a, p,A as the first case to be studied. We
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Table 12: Truth table of penetration ∗ in 3D5.
∗ 0 a b c d e p q r s t A B C D E 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

a 0 a a a a a a 1

b 0 b b b b b b 1

c 0 c c c c c c 1

d 0 d d d d d d 1

e 0 e e e e e e 1

p 0 a b p b a p b a p 1

q 0 b c b q c q q c b 1

r 0 c d c r d c r r d 1

s 0 d e d s e d s s e 1

t 0 a e a e t a e t t 1

A 0 a b c p q c a A q c a p 1

B 0 b c d b q r d q B r d b 1

C 0 c d e c r s e c r C s e 1

D 0 a d e a d s t a d s D t 1

E 0 a b e p b e t p b e t E 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 19: Simplified 3Dn lattice diagram.

must try to make sense of the expression x . y ≤ x ∗̄ y ≤ x+ y, as long
as x ∗̄ y is a thesis, and also that x ∗̄ y 6= 0. Due to the semantics of
penetration, it seems only natural to choose the definition a ∗̄A = p,
given that p is an intermediate value between a and A.105 After adopt-

105 The Masonic triad–liberty, equality, fraternity–provides an interesting example of
this notion. It is formed by two opposing elements, liberty and equality, and a synthe-
sis, fraternity. It is clear that if human beings were truly fraternal, they would be free
and equal.
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ing this criterion, it naturally follows that A ∗̄ p = p, a ∗̄ p = p and
p ∗̄ p = p. On the other hand, a ∗̄ a = a and A ∗̄A = A also occurs
naturally. From these expressions it follows that for the triad a, p,A, ∗̄
is commutative, associative and idempotent.

By the same token, by rotation we can obtain that the triads b, q, B
and those obtained by rotation are also commutative, associative and
idempotent. Using identical reasoning, we can consider that b, p, E or
c, q, A also generate a penetration function, albeit a different one. At
this point we must also accept that the triads b, p, A or c, q, B present
a different case, as well as b, q, A or c, q, B. Ultimately, these consid-
erations allow us to define new penetration functions different from
common penetrations.

The previous considerations have left out the values 0 and 1. The
idea behind these new penetration functions is to choose functions
which only link theses formed by dialectic elements. In this manner,
the following expressions d ∗̄ 0 = 0 ∗̄ d = 0, complemented each other,
where d is any given value. In actuality, the importance of strict pen-
etrations lies mainly in the dialectic values, this is why the definition
does not determine cases of d ∗̄ 1 = 1 ∗̄ d which must be determined
by additional semantic considerations. The new penetration functions
operate strictly among dialectic theses, and for this reason, they can
be referred to as strict penetrations–they do not involve non-dialectic
values. These considerations lead to the following definition.

Definition 27 The strict penetration ∗̄ will be referred to as a two-
variable function in a dialectic lattice that has the following properties:

1. ∗̄ has the properties I, A, C, RI;

2. binary penetration (PB) property: if x is a lattice element
x ∗̄ 0 = 0 ∗̄x = 0 is met but no semantic conditions are de-
fined for x ∗̄ 1 = 1 ∗̄x;

3. dialectic penetration (PD) property: if x, y meet that x ∗̄ y is a
thesis, then the following is met: x . y ≤ x ∗̄ y ≤ x+ y.
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It is worth noting that condition 2 is compatible with the properties
I, C, RI. By definition, I and C follow. The associative property has
several cases which are all proven in a similar manner. Let us consider a
couple of representative cases: (0 ∗̄ 1) ∗̄x = 0 ∗̄ ( 1 ∗̄x) = 0, (x ∗̄ y) ∗̄ 0
is separated into two distinct cases 1) if z = x ∗̄ y is a thesis z 6= 0 then
it is worth z ∗̄ 0 = 0, 2) if x ∗̄ y = 0, then it is also worth 0.

If x∗̄01 = 0, x∗̄d1 = x or x∗̄11 = 1, are used as additional seman-
tic conditions in Definition 27, where x is any given lattice value, the
properties of Definition 27 are verified.106

Strict penetrations can also be obtained as sums in a semi-lattice,
as shown in Figure 20, where cD is an appropriate arrangement of the
lattice’s dialectic elements, as shown in Figures 22 and 23.

Figure 20: Semi-lattices for strict penetration functions.

Theorem 48 Strict penetrations in 3Dn lattices comply with the ex-
pressions in Table 13 except for the value 1.

Proof. As per Theorem 42, these functions–which meet I, A, C–
are sum operations in semi-lattices which must meet the DP condi-
tion. Figure 21 presents the schemes that allow us to write these func-
tions. For purposes of meeting the DP condition, opposites–atoms and
maximum elements–that keep the function different from 0 must meet

106 It is worth noting that a result of the type x ∗ 1 = Rx does not meet the DP
property. Thus, for example, a = a . 1 � a∗̄1 = b = Ra and similarly for Ri. The
case x∗̄1 = 1 does not appear to have any applications of interest.
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some of the conditions of the figure, they need to be adjacent. In this
case, the conditions of opposites are met:

N0 di = Di Nn−1di = Di−1 Nn−1Di = di+1 Nn−2 di+1 = Di−1

Figure 21: Diagram for strict penetration functions in 3Dn.

Table 13 contains the generic expressions for the four strict pene-
trations. The idempotency equations–of the type Di ∗̄jDi = Di and
others for atoms and central elements–have been omitted, as well as
0 values, since they are common to all functions. Functions involving
elements 0 and 1 clearly are missing. There are four strict penetration
functions. �

Table 13: Expressions of penetration functions in 3Dn
di ∗̄1Di = Ci di ∗̄1Ci = Ci Di ∗̄1Ci = Ci

di ∗̄2Di−1 = Ci di ∗̄2Ci = Ci Di−1 ∗̄2Ci = Ci

di+1 ∗̄3Di = Ci di+1 ∗̄3Ci = Ci Di ∗̄3Ci = Ci

di+1 ∗̄4Di−1 = Ci di+1 ∗̄4Ci = Ci Di−1 ∗̄4Ci = Ci

Table 14 presents the truth table for the dialectic penetration func-
tiona ∗̄1 for this lattice. In our presentation 0 values have been omitted
in the dialectic area for the sake of clarity. The function thus defined
meets the properties I, A, C, RI, BP and DP.

Figure 22 shows the four schemes of semi-lattices generated by the
functions. The value 1 has been omitted since it has a separate treat-
ment in the semi-lattice, as shown in Figure 20.

Strict penetrations are not ample penetrations. Let us consider, for
instance, ∗̄1. Es claro que b ∗̄1A = 0 and that b . A = b, then, the PD
property is met.
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Figure 22: Semi-lattices for penetration functions in 3D5.

Table 14: Truth table for strict penetration 1 in 3D5.
∗̄01 0 a b c d e p q r s t A B C D E 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a 0 a p p 0

b 0 b q q 0

c 0 c r r 0

d 0 d s s 0

e 0 e t t 0

p 0 p p p 0

q 0 q q q 0

r 0 r r r 0

s 0 s s s 0

t 0 t t t t0

A 0 p p A 0

B 0 q q B 0

C 0 r r C 0

D 0 s s D 0

E 0 t t E 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

145



An Inquiry into Dialectic Logic

Table 15: Truth table of strict penetration 2 in 3D5.
∗̄d2 0 a b c d e p q r s t A B C D E 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a 0 a p p a

b 0 b q q b

c 0 c r r c

d 0 d s s d

e 0 e t t e

p 0 p p p p

q 0 q q q q

r 0 r r r r

s 0 s s s s

t 0 t t t t

A 0 q q A A

B 0 r r B B

C 0 s s C C

D 0 t t D D

E 0 p p E E

1 0 a b c d e p q r s t A B C D E 1

Clearly, the value of the penetration function of two opposites has
to be a central element for properties C and DP to be met. According
to this condition, the expressions of the four penetration functions can
be constructed.

Table 15 presents the truth table for penetration ∗̄2 where the op-
tion x ∗̄2 1 = x has been chosen. This function has interesting proper-
ties related to functions of becoming and quantifiers. This is of interest
in applications of the experimental and social sciences, as we will see in
upcoming chapters.

Strict penetrations fail to meet Theorem 44 given that in the case
of ∗̄di we have that a ∗̄di b = 0 but N0 a ∗̄di N0 b = A ∗̄di B = 0 6= N0 0.
The same thing occurs in the case of ∗̄0i or ∗̄1i .

The study of strict penetration functions in higher-rank lattices
does not appear to be of much interest, at least in the current state
of this inquiry. In spite of this, it is possible to indicate how we can
extend the penetration functions by means of a construction similar to
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the one shown in Figure 22.
The construction of strict penetration functions can continue in

odd-rank lattices.As an example, we can consider the construction in
5Dn, see Figure 23. In the figure, the value 1 has been omitted, which
may occupy any of the relations in Figure 20.

Figure 23: Lattice and semi-lattice for penetrations in 5Dn.

The diagram on the left contains the mathematical notation for the
lattice. The diagram on the right contains the semi-lattice that con-
structs one of the penetration functions. The other functions are con-
structed in the same manner, but with the elements di+2, ei+1, Ei−1,
Di−2, etc.

Rank-5 strict penetrations allow us to make an in-depth study of
some issues of class in the social sciences. For the time being, there do
not seem to be any examples calling for a rank-7 lattice.
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Introduction

The second dialectic function that we must introduce describes the
property of becoming, of the transformation. It is comprised by a two-
variable function f(x, y) that states that the dialectic value x becomes–
is transformed–into the dialectic value y. Therefore, we note it as x→ y.

The composition of the becoming function is based on identifying
formal properties extracted from examples of becoming as performed
by spontaneous human thought. The examples previously studied al-
low us to formalize it. They originate from human experience rather
than from a priori speculation.

The first of the becoming properties states that immobility is im-
possible, as Heraclitus argued to Zeno. This means that the expression
a→ a is absolutely false.

The different examples introduced, which have originated from
spontaneous thought throughout the centuries, show that there is a
close relationship between the becoming function and negation. In
most of the cases analyzed it appears in the following manner:

· · · a→ N a→ N N a→ N N N a→ · · ·

where a is a dialectic value and N is a specific negation. This is al-
most always a closed process in a cycle which returns to the point of
departure.

Naturally, a semantic property runs through the entire structure of
the dialectics, the rotation invariance, RI, of the lattice. It is standard
to think that the logical function of becoming fulfills this property, as
a consequence of the commutation between the rotation and the nega-
tions.

A specific case of becoming involves the binary values 0 and 1. The
usual interpretation of traditional logic tells us that 0→ 0 and 1→ 1
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are absolutely true. Statements in logic or mathematics are considered
immutable. As a result, 0 → 1 and 1 → 0 are absolutely false. By ex-
tension, a dialectic value cannot become 0 or 1 and reciprocally. These
properties can be determined by a formal definition.

Definition 28 The becoming function, x→ y, is a two-variable func-
tion in a dialectic lattice which meets the following properties:

1. Becoming of movement (DM): If d is a dialectic value, then
d→ d = 0.

2. Becoming of negation (DN). If d is a dialectic value and N is
any given negation, then d→ N d is a thesis.

3. Becoming of rotation (DR). If a → b is a thesis, then
Ra→ Rb, where R is a lattice rotation, is also a thesis.

4. Permanence of the formal values (PP): True and false values
are immutable, that is 0 → 0 = 1 and 1 → 1 = 1. As a
complement, if d is a dialectic value, then d→ 0 = 0, d→ 1 =
0, 0→ d = 0 and 1→ d = 0.

Figure 16 presents the general structure of a becoming function,
where f(x, y) meets the properties BM, BN and BR. This dialectic
function is the natural extension of the equivalence function in binary
logic; it is enough to take a look at the relations between 0 and 1.

Table 16: Structure of the generic dialectic becoming.
→ 0 dialectic 1

0 1 0 · · · 0 0

d
ia

le
ct

ic

0 f(x, y) 0

1 0 0 · · · 0 1

Unlike other dialectic functions, where the result of the operation
is what really matters, in the becoming function the result usually bears
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little importance–the chains formed, that have thesis value and describe
the process of becoming, are the truly important elements. In order to
continue with the analysis of becoming it is necessary to define what is
understood by a chain of relations in becoming.

Definition 29 The chain a → b → c → · · · → g → h refers to
the set of expressions in becoming, chained as a sequence between each
other, which are theses: a→ b, b→ c, . . . , g → h.

A general property of the becoming function is that every chain in
becoming returns to the starting value.

Theorem 49 If we consider the chain a → N a → N N a · · · where
a is a dialectic value and N is any given negation, the chain goes back
in itself: it is a closed cycle.

Proof. There is a value of p such that Np = I , the identity, then, it
returns to a. �

Naturally, involutory negations exist, and there are also chains com-
prised of only two elements, as several examples show. We can also ob-
serve that the becoming function cannot be transitive, because if from
a → b → c we could obtain that a → c is a thesis, then, each closed
chain would prove that a → a is a thesis, contradicting the BM prop-
erty of the becoming functions.

There is a general way of constructing a becoming function, as es-
tablished by the following theorem.

Theorem 50 The function defined in a dialectic lattice of rank r > 1
and an ordinary negation N , in which there is no x such that Nx =
x (non-idempotent negation), is a becoming function if it meets the
following conditions: 1) for each dialectic value d and negation N ,
d → N d is a thesis, 2) for the remaining pairs of dialectic values it is
worth 0 and 3) it meets PP.
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Proof. In r > 1 and N , due to 1), there is no a such that N a = a,
then, BM is met. The BN property is met due to 2). If d → N d = e
is a thesis, then Rd → RN d = Rd → N Rd is a thesis due to
the commutative property of ordinary negations and 1), then, BR is
met. PP is met due to 3), then, it is proven. In the demonstration, the
dialectic value e does not participate.107 �

This result shows that there are several becoming functions if we
only take into account the chains, and not just the values that the be-
coming function acquires. It is worth noting that if a → b because
b = N a, then, it also occurs that b → a because a = N−1b but these
are two different becoming functions, unless N = N−1, an involutory
negation, takes place.

It is important to note that for exotic negations, the equalityR Ñj =
Ñj R−1 is met, and the BR property is not.

Becoming in Dn

According to the theorem of negations in Dn, several becoming func-
tions can be constructed by means of negations N1, N2, . . . as well as
by the choice of values that the function acquires. Table 17 presents the
truth tables of two becoming functions, the first constructed from N1

and the second, from N2.108 Zeros are omitted in the dialectic area.

Table 17: Some truth tables of becoming in D4.
→ 0 a b c d 1

0 1 0 0 0 0 0

a 0 b 0

b 0 c 0

c 0 d 0

d 0 a 0

1 0 0 0 0 0 1

→ 0 a b c d 1

0 1 0 0 0 0 0

a 0 a 0

b 0 b 0

c 0 c 0

d 0 d 0

1 0 0 0 0 0 1

107 A generic equation for defining a becoming function is, for example, the expression
d→ Ni d = Rj d for the appropriate values of i, j.
108 The equations used in the functions in Table 17 are, respectively: d→ N1 d = Rd
and d → N2 d = d. There are other possible examples–where the values are changed
in the dialectic area–which meet the general properties of becoming.
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In the first function, the closed cycle a→ b→ c→ d→ a occurs,
and in the second function, the cycles a → c → a and b → d → b.
This depends on the negations used in the lattice. In general, if n is not
a prime number, there are cycles which have a number of elements that
are divisors of n, as 2 is a divisor of 4, in this case. In D6, for instance,
there are cycles of 2, 3 and 6 elements.

The elements in the sequence of becoming are diachronic opposites
and, to a large extent, they are equivalent among themselves. This is
discussed below in more depth, through examples.

Becoming in 2Dn

The general theorem allows us to construct becoming functions in 2Dn.
With the aim of illustrating the method, we will choose case 2D4 using
the notation from Figure 13. Table 18 presents the truth table con-
structed with the equation d → D = Rd. Zeros are omitted in the
dialectic area.

Table 18: Truth table of a becoming function in 2D4.
→ 0 a b c d A B C D 1

0 1 0 0 0 0 0 0 0 0 0

a 0 b b 0

b 0 c c 0

c 0 d d 0

d 0 a a 0

A 0 B B 0

B 0 C C 0

C 0 D D 0

D 0 A A 0

1 0 0 0 0 0 0 0 0 0 1

As can be constructed, the cycle a → A → b → B → c → C →
d → D → a, is generated, but also cycles a → b → c → d → a and
A→ B → C → D → A.
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Becoming in 3Dn

As in all odd ranks, rank-3 lattices have central elements. This fact en-
dows the becoming function with special properties. In addition, these
lattices are very important with regards their application to the dialec-
tics of history.

The general theorem allows us to construct becoming functions in
3Dn. In order to illustrate the method, we will choose case 3D5 with
the notation from Figure 14. x → N0 x = x is taken as the defining
function. There is no point in writing down the truth table which is
almost exclusively populated with zeros. For this reason, we prefer to
only write down the significant dialectic values.

Table 19: A becoming function in 3D5.
a→ A = a p→ q = p A→ c = A

b→ B = b q → r = q B → d = B

c→ C = c r → s = r C → e = C

d→ D = d s→ t = s D → a = D

e→ E = c t→ p = t E → b = E

This becoming function generates two causal cycles, the first be-
tween atoms and maximum elements

a→ A→ c→ C → e→ E → b→ B → d→ D → a

the second, among central elements

p→ q → r → s→ t→ p.

Despite having the same elements, the causal cycle of maximum
elements and atoms is different from those found in 2D5.

Heraclitus’ river

In rD∞ lattices, the becoming function does not configure a closed
causal cycle. Quite to the contrary, the successive negations always lead
to new dialectic values. This is the logical model of Heraclitus’ river:
see page 58.
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This model also applies to natural selection. The process of be-
coming of the species never returns to a previous stage, at least in the
current state of our knowledge of nature. By extension, this also ap-
pears to be the logical model of the progress of human history, at least
according to the materialistic interpretation, and not to Vico.

Synchronic and diachronic opposites

The penetration and becoming functions are closely related to the syn-
chronic and diachronic opposites described in the initial chapters. These
functions allow us to formalize their definition and properties.109

Definition 30 Two elements, x and y, different between themselves,
in a dialectic lattice L are referred to as synchronic opposites if x ∗̄ y is
a thesis for a strict penetration function of the lattice. Two elements are
referred to as diachronic opposites if x→ y is a thesis for a becoming
function of the lattice.

This situation can be further exemplified in 3Dn where the two
types of opposites can be found and related within the same lattice.
Figure 24 presents the lattice with the mathematical notation.

Figure 24: The 3Dn lattice in mathematical notation.

These definitions allow us to prove a result which is of relevance
in applying dialectics to various cases of interest. Let us consider the

109 Note that if x ∗̄ y is a thesis, the elements x and y, different between themselves, are
opposites since there is a negation that links them, see truth tables. In the case x→ y
they are opposites due to the definition of→.
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penetration ∗̄1 which is commutative.

Theorem 51 In every 3Dn lattice, the following equations are met:
di ∗̄1Di → Ci+1, Ci → di+1 ∗̄1Di+1 and di ∗̄1Di → di+1 ∗̄1Di+1

for all the values of i.

Proof. It immediately holds true, see Table 13.

di ∗̄1N0 di = Ci di+1 ∗̄1N0 di+1 = Ci+1 · · ·

Then, the following pairs of elements

di, N0 di = Di di+1, N0 di+1 = Di+1 · · ·

are synchronic opposites. On the other hand, we have that

Ci+1 = N0Ci Ci+2 = N0 q · · ·

which indicates that we can write

Ci → Ci+1 Ci+1 → Ci+2 · · ·

and therefore, these are diachronic opposites. As a consequence, holds
true; by replacing elements for the results obtained, we obtain the equa-
tions that needed to be proven. �

This theorem is proven similarly for penetration 2.

Theorem 52 In every 3Dn lattice, the following equations are met
di ∗̄2Di−1 → Ci, Ci+1 → di+1 ∗̄2Di = Ci, di ∗̄2Di−1 →
di+1 ∗̄2Di for all the values of i.

Proof. The demonstration is similar to the previous case, see Table
13.

di ∗̄1Nn−1 di = Ci di+1 ∗̄1Nn−1 di+1 = Ci+1 · · ·
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Then, the following pairs of elements

di, Nn−1 di = Di−1 di+1, Nn−1 di+1 = Di · · ·

are synchronic opposites. On the other hand, we have that

Ci+1 = N0Ci Ci+2 = N0 q · · ·

which indicates that we can write down

Ci → Ci+1 Ci+1 → Ci+2 · · ·

and therefore, these are diachronic opposites. As a consequence, holds
true; by replacing elements of the results obtained, we obtain the equa-
tions that needed to be proven. �

Although this theorem appears to be similar to the previous, it
has one substantial difference. In the first case, synchronic and di-
achronic opposites occur through negation N0. In the second case,
synchronic opposites occur through negation Nn−1 and diachronic
opposites through negation N0. The fact that only one negation takes
part in the first theorem, while two are involved in the second, is essen-
tial to its application in the social sciences.

It is easy to extend these results to more complex lattices with an
odd r. The application of these equations is important in the social
sciences, as analyzed in the final chapter of this book.
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Introduction

The word dialectic comes from the Greek διαλεκτικος (dialektikos),
which means “pertaining to dialogue”. The term gave way to the Latin
dialectice, where it acquired the sense of telling true from false. The
term subsequently made its way to the modern European languages. In
the last centuries, it incorporated the meaning of analyzing opposites.
The present chapter examines this idea of dialogue and resolution of
contradictions. It is expected that a formalization of dialectics will al-
low us, at the very least, to “reason”, regardless of the meaning endowed
to the term.

Without question, the deductive model introduced by Euclid and
formalized by George Boole, Gottlob Frege (1848, 1925) and Bertrand
Russell has proven to be very successful. However, it fails to cover all
aspects of the “natural reasoning” that we, as humans, perform.

For example, the British empiricists introduced induction as an ad-
ditional mechanism for creating knowledge. The formal aspects of this
methodology, which is associated with the natural sciences, aroused
suspicion from early on. What was the formal structure of this manner
of generating knowledge? For a couple of centuries, the topic remained
in a haze. In the 20th, Karl Popper (1902, 1994) finally made a major
breakthrough.

Popper’s proposal was based on mathematics: statements–especially
those derived from experience–are not proven, but refuted. By revers-
ing the terms, the problem seemed to have been solved. The model
followed by Popper has long been used in mathematics. The existence
of a counterexample is sufficient proof of the falseness of a statement.
Finding a case that cannot be proven is enough to refute the statement,
dismiss it and ascertain its falseness.

For Popper–and all scientists–a statement has to be able to be re-
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futed in one way or another. Maybe not right now, for technological or
economic reasons, but it still bears the potential. If it cannot be refuted,
it is either a philosophical or a theological statement, or it is a belief.

This works very well in mathematics and binary logic, where a
statement can only be true or false. But it is not the case in dialec-
tics, where there are many intermediate values of truth. We will need
to take over this issue exactly where Popper left off.

Argumentation

The theory of refutation has played a key role in illustrating the foun-
dations of science. However, it proves to be quite partial in developing
scientific statements.

Science is not cut and dried. It is not a set of precise statements
awaiting potential refutation. Most outcomes in science are works in
progress and only a few statements meet Popper’s ideal conditions.
How do scientists, then, go about their work using imprecise state-
ments? When a new thesis is established, a quest for refutable state-
ments begins–those that cannot be refuted by all that is known up to
that moment. This Popperian property is not enough. While it is true
that new theories must be useful, old, refuted theories can be useful
as well. Table 20 presents some examples that we will analyze in this
section.

Table 20: Examples of theories.

useful useless

refuted Newton’s Mechanics Aristotle’s Mechanics

not refuted Quantum Mechanics
Relativistic Mechanics

non-existing dinosaurs
non-expanding universe

It seems clear that Newton’s mechanics have refuted Aristotle’s me-
chanics and rendered them useless, see [8]. While relativistic and quan-
tum mechanics have refuted Newton’s mechanics, their coexistence in
different fields of application means the latter was not invalidated by
the former. This table considers possible statements about the exis-
tence of dinosaurs and the expanding universe.

• Dinosaurs have never existed as living beings. What exist are fos-
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silized bones formed as a geological phenomenon of the Earth’s
crust.110

• The universe is not expanding. The red shift observed by as-
tronomers is due to a property of telescopes. When the light of a
galaxy that lies far away travels through the telescope, it suffers
a shift. This does not occur with lights originated at distances
closer than one light-year.

While these statements are difficult to refute, it is not impossible to
do so.111 However, no scientist would even bother.

Why, then, do we reject these statements? We do, because, aside
from the possibility of being refuted, scientific statements must have
a justifying argument. A true scientist will demand a reason for which
the light coming from a distant origin to behave differently as it travels
through a telescope; he will demand to know the exact make and model
of the telescope used and the reasons why the laws of optics would
change at all. In the world of science, it is not enough to propose some-
thing and await refutation, as Popper imagined–it is also necessary to
make an argument for the validity of the statement. The structure of a
scientific statement looks like the following:

A is valid because of reason R1, because of reason R2, because of
reason R3, . . .

The longer the list of arguments, the better the scientific quality of the
statement and its credibility will be. In this expression, the comma
replaces a new associative and commutative connective–given that the
order or grouping of the arguments does not change the result–as ex-
plored in this chapter. If we use the symbol ⊕ to refer to this new

110 This statement was essentially formulated by a Jewish fundamentalist in his attempt
to deny the age of the Earth. He would add that if no one had ever seen a dinosaur,
then no one could be sure they ever existed. The inconvenience with this argument
is that it can also apply to atoms, quarks, Jupiter’s storms and many other more cases
usually studied by science.
111 In his novel Jurassic Park (1990), Michael Crichton (1942, 2008) proposes a refuta-
tion of the first statement through the “fabrication” of a dinosaur by reconstructing its
DNA through fossils preserved in resin. The second statement is potentially refutable
by means of an artificial probe and experimental measurements.
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connective, we have the following expression:

A = R1 ⊕R2 ⊕R3 ⊕ · · ·

R1, R2, R3, . . . become increasingly “independent” and “complemen-
tary” the statement’s credibility will increase as well. Below are some
classic examples:

• When Newton formulated his theory of universal gravitation,
he presented few arguments: how bodies fell to the ground in
Earth, the motion of the Moon, the planetary system and the
comets. All of these arguments, independent among themselves,
supported the idea of universal gravitation.

• When Darwin formulated natural selection, he argued through
independent cases: the selection of animals and vegetables by hu-
man cultivation, the flora and fauna of the Galapagos and many
other specific cases.

• When Einstein formulated General Relativity, he only had one
experimental proof: Mercury’s perihelion shift. Observation of
the 1919 eclipse added the deviation of the light upon passing
near the Sun’s mass. With the years, other phenomena have been
included and yet others will be incorporated until the theory is
(eventually) refuted.

This is a common work method in science. However, it poses major
difficulties when dealing with binary logic. This method cannot be for-
malized in binary logic. In fact, there is no logical connective allowing
us to link a chain of statements so that their truthfulness is reinforced.
Furthermore, in binary logic, a statement can only be true or false—it
can never be more or less credible.

It seems clear that the process of refuting a statement is also an ar-
gumentative process. Refutation consists in accumulating arguments
to oppose it, just as when defending a thesis. This process can only be
comprehended and formalized through dialectic logic. In the natural
sciences, for instance, the formal model from mathematics is not fol-
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lowed because the situation is different.112 Both truth and refutation
imply a process of accumulating arguments, instead of a search for a
formal counterexample. At this point, dialectic logic, with its multiple
logical values, allows us to shed light on the situation.

For Popper, this is not a problem, since his idea of argumentation
takes place in the realm of binary logic. As in mathematics, refuting
implies finding a counterexample. There is no such thing as argumen-
tation: only refutation exists, since its logic only allows for something
to be true or false.

Argumentation in a court of law

The clearest example of argumentation occurs in a court of law, where
defendant and plaintiff face each other to defend opposing positions.
To do this, they resort to a series of arguments that are considered
valid–the “evidence” supplied by each litigating party. On occasion,
they might give a different interpretation for common arguments. Af-
ter the argumentation, a jury or judge will decide which party is more
right than the other, because one set of arguments will convince them
of its “truthfulness” by accumulation in quantity. The litigation is then
resolved.

The formulation of a thesis and its refutation is a logical mecha-
nism identical to the development of a judicial process. Although our
everyday lives are full of this kind of activities, binary logic is unable
to build a model for the things that take place in court. While the
words “true” and “false” are thrown back and forth, they never have
the meaning endowed to them within the realm of binary logic. This is
something that can only be formalized by dialectics.

In court, a list of facts H1, H2, H3, . . . is presented; these facts are
considered to be true. They are so in an ordinary or day-to-day sense,
but not in the mathematical or absolute sense. They are what in this
study we refer to as a thesis, something in between “true” and “false”.

112 Imre Lakatos (1922, 1974) and other authors defend Popper’s argumentative nature
in mathematics, with one difference. The argumentation consists in contrasting rival
theories, which also applies to mathematics. His thesis is supported by an excellent
collection of historical examples.
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Ideally, the various arguments must be simple and independent from
each other–they cannot be further “decomposed” or “separated” into
more basic arguments. This is necessary for their proper use in argu-
mentation.

The set comprised by all the facts is contradictory in itself. All of
the Hi cannot be true at the same time, because if they were, there
would be no reason to discuss or argue. Each litigating party classi-
fies their arguments into three sets: arguments considered “valid” or
“significant”, those considered “neutral”, “indifferent” or “irrelevant”,
and those considered “non-valid”, “insignificant” or “accidental”. All
in all, we can classify Hi as A1, A2, · · ·Ap to refer to facts argued by
the prosecutor, D1, D2, · · ·Dr a to refer to facts argued by the defense,
and I1, I2, · · · Is to refer to indifferent facts.113

The argumentation consists in proving that the facts at hand “are
more truthful” or “bear greater weight” than those of the opposite
party. This is where the argumentation function comes in. Schemati-
cally, we have:

A = A1 ⊕A2 ⊕ · · ·Ap ⊕ I1 ⊕ I2 ⊕ · · · Is

D = D1 ⊕D2 ⊕ · · ·Dr ⊕ I1 ⊕ I2 ⊕ · · · Is

where A is the “value” or “weight” of the accusation and D, that of the
defense. The task of the judge or jury consists in resolving the relation
A ≶ D.The greater value of the function will correspond to whoever is
“right”. The question may eventually remain undecided.

Having reached this point, we simply need to define the argumen-
tation function.

The argumentation function

The main property in the argumentation function is a type of monotony
allowing to “reinforce” the argumentation–obtain a “greater level of
truth”. If we resort to the interpretation of dialectics, considering the

113 This is a simplification since indifferent arguments cannot be the same for the two
litigating parties.
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case that involves only two variables, we need to look for a function
f(x, y) with the following property:

f(x, y) ≥ x f(x, y) ≥ y.

The argumentation is thus “reinforced” by the added arguments. It
follows that the function is commutative and associative–in no other
way could we obtain a succession of arguments without minding the
order in which these are presented. It also follows that f(x, x) = x
because the reiteration of the same argument adds nothing to its value
as truth.114

The argumentation displays a peculiar behavior with regards to the
values “true” and “false”. It is clear that introducing an argument that
is absolutely true does not change the value of the argumentation at
all; then, x⊕ 1 = x must be met. Conversely, adding a false argument
invalidates the entire argumentation, then x⊕0 = 0. Taking everything
into account, the argumentation is defined as follows.

Definition 31 An argumentation function between two elements
x, y in a dialectic lattice L is referred to as a function ⊕ that complies
with the following:

1. Is idempotent (I), associative (A) and commutative (C).

2. Is rotationally invariant (RI): R(x⊕ y) = Rx⊕Ry.

3. x⊕ y ≥ x and x⊕ y ≥ y.

4. x⊕ 1 = x and x⊕ 0 = 0.

It follows from Theorem 42, that ⊕ is a sum operation in a semi-
lattice. The truth table for ⊕ is obtained in a very simple manner: by

114 In daily life, on the contrary, the reiteration of the same argument can create a false
increase in its logical value. Joseph Goebbels (1897, 1945), the sinister minister of
propaganda of the Third Reich, is credited with: A lie told once remains a lie but a lie
told a thousand times becomes the truth. While the quote may be false, it conveys the
idea well.
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exchanging the values 0 and 1 in the lattice and constructing the result-
ing OR function. Figure 25 illustrates this procedure for lattice 2D4,
but it operates in general for lattices of other ranks and numbers. This
function is constructed in a manner similar to how the penetration
functions are built, but their diagram clearly differs from those in Fig-
ures 15 and 20.115 From this property, we can obtain the truth table
presented in Table 21.

Figure 25: Generic semi-lattice for the argumentative function.

Table 21: Truth table for the argumentative function.
⊕ 0 a b c d A B C D 1

0 0 0 0 0 0 0 0 0 0 0

a 0 a A 0 D A 0 0 D a

b 0 A b B O A B 0 0 b

c 0 0 B c C 0 B C 0 c

d 0 D 0 C d 0 0 C D d

A 0 A A 0 0 A 0 0 0 A

B 0 0 B B O 0 B 0 0 B

C 0 0 0 C C 0 0 C 0 C

D 0 D 0 0 D 0 0 0 D D

1 0 a b c d A B C D 1

Given that it is an OR operation with rotational symmetry, this
function is commutative, associative, idempotent and rotationally in-
variant. It is called argumentative because, due to the composition

115 As is evident, in rank-1 lattices, ⊕matches the known AND function. In the 3Dn,
lattice, for example, a⊕ b = p but a ∗ b = 0.
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of dialectic values, an absolute truth–the value 1–cannot be obtained.
This function describes the argumentation process in a trial. Each at-
torney will try to avoid falling into a contradiction–avoid accumulating
arguments that lead to 0 value–,which would be fatal for the defense.
For this reason, an attorney will never attempt to challenge something
that has already been proven as true.

In an actual controversy, depending on the existing number of in-
dependent arguments, lattice rDn may operate. As the arguments grow
in number, n increases, and it is of interest that r also does. Presumably,
whoever achieves a combined argument whose logical value is greater
than that of their opponent will succeed in court.

This mechanism applies equally when having to choose between
two different scientific theories regarding the same phenomena, some-
thing which is not very different from how argumentation occurs in a
court of law.

The foundation of principles in science

It is clear that refutation is an argumentation process. But this is not its
only application. There are other aspects to how science is constructed,
which also make use of argumentation: the construction (or founda-
tion) of scientific principles.

Let us consider some “principles” in the natural sciences:

• Galileo’s principle of relativity.

• Galileo’s law of inertia.

• Newton’s universal gravitation.

• Lavoisier’s law of conservation of mass.

• Mayer-Joule’s law of conservation of energy.

• Darwin’s inheritance and mutation of living beings.

• Darwin’s survival of the fittest.

All of these statements are the result of argumentation on simple
and isolated observations. On the whole, they are similar to the argu-
mentations presented in court. It is worth noting that the examples
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taken from physics, chemistry and biology that are shown here have
been chosen to show how the method can be applied to all of these
cases.

We will now go through the argumentation processes as performed
by the different authors. Galileo’s principle of relativity was a theo-
retical formulation resulting from the composition of movements. At
the same time, the composition of movements allowed proving that
projectiles followed a parabolic trajectory. These were the main argu-
ments. The refutation of Aristotle’s physics in relation to falling bodies
in a moving vessel followed–a ball dropped from the mast of a mov-
ing ship or an arrow thrown towards the stern. Pierre Gassendi (1592,
1655) successfully carried out this experience.116 The principle of in-
ertia was Galileo’s experimental result as part of his analysis of falling
bodies: a small ball in a horizontal plane would move with constant
velocity.

As we have already proven, see page 31, Newton’s argument for
gravitation was based on five independent arguments117

GN = K1circular⊕K3SolarSystem⊕K3Jupiter⊕K3Saturn⊕K3Earth

where GN is Newton’s gravitation, K1 is Kepler’s first law–equal areas
in equal time–and K3 is the third law–periods are proportional to the
3/2 power of the diameter. The sub-indexes correspond to uniform
circular motion, the solar system and the satellites of Jupiter, Saturn
and the Earth.

Once the law of gravitation was established, Newton proved that
the motion may be elliptical, Kepler’s second law, see [67, 68, III, The-
orema xiii] or parabolic [68, III, Theorema xx] and analyzed the trajec-
tory of the 1680 comet discovered by John Flamsteed, the first Royal
Astronomer. In [67, 68, III, Theorema xix] he proposes a gravitational
theory corresponding to the tides.

116 The difficulty in noticing the Earth’s rotation by means of falling bodies was depen-
dent on the law of composition of movements–it was not an objection to the existence
of rotation.
117 In the first edition there were four, K3 for Saturn’s satellites was missing. His rea-
soning was a typical “induction” reinforced by the presence of the new argument.
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These results can be stated as follows:

GN ⇒ K2 GN ⇒ Flamsteed comet

where⇒ is the logical implication, K2 is Kepler’s second law–the mo-
tion is elliptical with the Sun being one of the foci–to which he adds
the comet’s parabolic motion.

As important as “explaining” Kepler’s first three laws is having dis-
missed and ignored the fourth law that the orbits of the six planets
correspond to the five regular solids–the octahedron, the icosahedron,
the dodecahedron, the tetrahedron, the cube. Why did Newton ignore
K4? For a simple reason: the theory of gravitation proved that the
position of a body’s satellites can be located at any distance from the
center of attraction.118

The principle of mass conservation in chemical reactions was an
experimental result obtained by Antoine-Laurent de Lavoisier (1743,
1794), see [54], by means of several experiences in which he weighed
the components and composites obtained in various experiments. Each
case added a new argument to the formulation of the principle. The
analysis of gases, especially oxygen, contributed to refuting the opposite
notion–the phlogiston theory–which argues that mass is not preserved
in the formation of oxides.

In 1842, Julius von Mayer (1814, 1878) posited that oxygen was a
major component in the metabolism of living beings and their source
of energy. In 1843, James Joule (1818, 1889) established the equiva-
lence between mechanical work and the heat produced by the viscosity
of water. This equivalence could also be proven by heating through
electric resistance, compression of a gas or heating upon boring a can-
non barrel. These independent experiments–and many more performed

118 The problem of the geometry of the solar system goes as far back as Pythagoras, who
associated the orbits to the musical scale. Kepler returned to this subject and the music
of the heavens. In 1766, Johann Bode (1747, 1826)—together with his student, Titus–
proposed an equation for the distribution of the planets, d = 0.4 + 0.3 × 2n where
d is measured in astronomical units–the average distance between the Earth and the
Sun—and n = −∞, 0, 1, 2, · · · . While asteroids fulfill this equation, Neptune does
not. The issue of the planetary distribution remains open and is now expanded by the
discovery of exoplanets.

167



An Inquiry into Dialectic Logic

by other scientists–used the principle of conservation of energy as an
argument.

Darwin’s argumentation appears in The origin of Species [15]. It
is hard to find a clearer and more complete example of argumenta-
tion in science. Each chapter of the work incorporates arguments that
reinforce his basic formulations. Chapters I and II show natural vari-
ations of the species and those achieved by domestication. In chap-
ter III–using Malthus’ argument on the free growth of populations–he
proves that not every living being that is born, survives. In chapter IV,
he theorizes about the natural selection of the survivors. In chapter
V, he establishes different manners of adaptation. In chapters X and
XI, he analyzes the problem from a geological standpoint and shows
its plausibility. In chapters XII and XIII, he studies the geographical
distribution of living beings.

Darwin’s work complies with the theory of argumentation with
precision. Not only does it contain an extensive list of simple argu-
ments, independent among themselves, but opposing arguments are
also present. In chapters VI and VII, he is brave enough to analyze the
flaws in his argumentation. The book in its entirety affirms the prin-
ciples through the application of the argumentation function. Chapter
XV summarizes the complete argumentation.
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Introduction to dialectic implication

The traditional use of dialectics does not need an implication function.
Implication allows us to build fixed and unchangeable chains of reason-
ing. Conversely, dialectic thinking preoccupied itself with movement,
change, and has no need for this function. However, human logic,
taken as a whole, must contemplate both aspects of thought. This is
the first reason for analyzing the implication function within a dialec-
tic lattice.

The second reason is linked to the foundations of implication. In
binary logic, things are very simple and the properties of implication
are connected amongst themselves. In dialectics, implication functions
show us a very different scenario and many results which are accepted
as valid and “proven” in binary logic, have counterexamples that refute
these demonstrations.

The main purpose of the formalization of this logic was to describe
the shape of “proper reasoning”. From Aristotle to Boole, to Gottfried
Wilhelm Leibniz (1646, 1716), the issue was under discussion. Towards
the end of the 19th century and the beginning of the 20th, it appeared
to have been settled. Frege and Russell’s formalization materialized a
well-rounded, flawless construction.119

Binary logic more than succeeded in describing “logical reason-
ing” by introducing the binary function of implication⇒ and its basic
properties. This function is one of the most important in binary logic,
comparable to AND and OR, and is equivalent to these to a large ex-
tent, as it is not difficult to prove.

119 Regardless of this alleged perfection, some scientists were wary of the results. Henri
Poincaré doubted the correctness and definitive nature of binary logic. It is possible
that he sensed that human thought had more structure than what binary logic could
describe.
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Dialectic logic is an extension of binary logic that includes other
forms of thought which escape the binary model. Since implication
is concerned with the construction of formal theories, it does not oc-
cupy an important place in dialectics. Nevertheless, given that dialec-
tics must contain binary logic as a special case, extending the definition
of implication becomes necessary. However, this is not expected to add
new forms of construction of deductive knowledge.

The final stage of consolidation of scientific knowledge is the for-
mulation of a deductive theory. Axioms or principles or hypotheses
take part in the construction of a theory, which serve as accepted propo-
sitions with a certain logical level. From these basic, accepted proposi-
tions, new statements are constructed by means of the application of a
reduced set of formal structures taken as valid.

In dialectic logic, the problem of extending the definition of impli-
cation is quite complex. It comprises two sets of rules:

• Formal rules in order to construct new statements from state-
ments accepted as valid.

• Semantic rules that allow us to apply dialectics to cases that are of
interest to science or history.

Ultimately, defining the rules of reasoning used in mathematics and
the sciences is what matters. Creating a priori functions, as binary logic
has done, proves to be useless. Frederic Fitch (1908, 1987), see [25, 91].
has proposed a different path. In essence, he defined a set of rules that
allow building a valid argument. In the upcoming sections related to
the implication function we will use this formalization, along with the
necessary adaptations.

The formal rules of dialectic implication

This section will cover these formal structures and how they extend
to dialectic logic. Disregarding obvious repetitions,120 these structures

120 The equivalence –co–implication in Fitch– of propositions is something redundant
which does not contribute anything, which is why it has been omitted from the formal
rules.
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appear below. Each rule has a mnemotechnic acronym to simplify its
use throughout the exposition.

1. Conjunction introduction (CI): if a and b are theses, a . b is one
as well.121

2. Disjunction introduction (DI): a ⇒ a + b is a thesis, regardless
of b.

3. Conjunction elimination (CE): if a . b is a thesis, a and b are the-
ses as well.

4. Disjunction elimination (DE): if a+ b is a thesis and a⇒ c and
b ⇒ c are theses then c is a thesis. This rule allows separating a
demonstration into two (or more) simples cases.

5. Principle of double negation (PDN): if a is a thesis, NN a is one
as well and reciprocally.122

6. Transitive property of implication (T): if a ⇒ b and b ⇒ c are
theses, then a ⇒ c is one as well. This rule allows us to form
chains of demonstration.

7. Modus Ponens (MP): if a ⇒ b and a are theses, then b is also a
thesis.123 This rule allows us to cut chains of demonstration.

8. Modus Tollens, in its simple variant (MT): if a ⇒ b is a thesis,
then if b is 0, a is 0. This rule implies that it is possible for 0⇒ 0

121 This rule is accepted in an acritical manner. However, there is reason to believe that
it is not generally valid. Quantum mechanics has shown this time and again. Let us
consider these two statements: a the position of a particle in a given instant can be
precisely measured, and b the speed of a particle in a given instant can be precisely
measured. While both statements are correct, a . b is false and this is referred to as
Heisenberg’s uncertainty principle. Quantum mechanics has challenged logic, as we
have shown before. This observation has major consequences for dialectic implication.
122 In some natural languages–Spanish is one example–, double negation can have an
emphatic purpose, as opposed to one of affirmation.
123 Modus Ponens can be stated in a less aggressive manner to binary logic, while re-
maining equivalent. If the first two propositions are not false, the third one is not,
either.
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to be a thesis. Modus Tollens extended (MTE) is a stricter condi-
tion, if a⇒ b is a thesis, then N b⇒ N a is also a thesis.

9. Principle of contradiction (PC) and the principle of contradic-
tion, extended (PCE): if a ⇒ N a is a thesis, then N a is also
one (PC). The extended principle establishes that if a ⇒ b and
a ⇒ N b are theses, then N a is one as well. PCE is a conse-
quence of PC and the previous rules.124 PC is a specific case of
PCE.

Before continuing with this subject, we need to clarify an essential
point on CI. If we consider two atoms, a, b of the lattice. It is clear that
both are theses. However a . b = 0, then, CI is not met. This result
is not only general for all dialectic lattices, but CI is not met as well
for many other lattice elements, for example, a and N a are theses, but
a .N a = 0 ifN is strict. We already know that the CI rule is not gener-
ally valid. For this reason, in the exposition that follows, the expression
“meets the formal rules” means “meets the formal rules, except for CI”.
When this is an important issue, it will be explicitly indicated. This
topic is analyzed in detail in what follows and is an essential issue for
the theory of dialectic implication.

The semantic rules of dialectic implication

Semantic rules are additional conditions asked from an implication
function for it to yield coherent results from the actual, spontaneous
use of dialectics.

1. Principle of permanence (PP): the values from binary logic must
be respected, then 0 ⇒ 0 = 1, 0 ⇒ 1 = 1, 1 ⇒ 0 = 0,
1⇒ 1 = 1.

2. Rotational invariance (RI): the implication function must be in-
variant in the rotation of the lattice rDn where it is defined, this

124 The demonstration is the following: If we take as a hypothesis: 1. a; 2. a ⇒ b and
3. a⇒ Nb it follows that: 4. b due to MP in 1 and 2; 5. NNb⇒ Na due to MTE in
3; 6. b⇒ Na due to PNN in 5.; Na due to MP in 4 and 6. Then, Na is a thesis.
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is R(x⇒ y) = Rx⇒ Ry. As a result, if x⇒ y is a thesis, so is
Rx⇒ Ry.

3. Idempotency (I): For every dialectic value d, d⇒ d = d is met.

4. Principle of mixture (PM): In some applications, it is desirable
for dialectic values to avoid “mixing” when repeatedly using the
implication function. With more precision, there is a non-trivial
subset of lattice elements, S such that if x, y ∈ S then x⇒ y ∈ S.125

The application of the PM rule applies especially to the analysis of
the natural sciences, as analyzed further ahead. When we say that “it
meets the semantic rules”, we mean to say that “it meets the semantic
rules, except for PM”. The importance of these additional rules–which
are not necessary in binary logic–will be clear from the exposition in
this chapter and those that follow.

Non-contradiction and independence of the rules

The non-contradiction of the formal rules follows, since in binary logic
these are met, therefore the set of rules is not contradictory. The non-
contradiction of the semantic rules, amongst themselves and with the
formal rules, results from the existence of implication functions that
meet them. Therefore, in lattice D3 for instance, this set of rules allows
finding 16 two-variable functions that meet them, except, naturally, for
CI and eventually, PM.126

Independence of the rules–something that does not bear much in-
terest in practice–implies finding counterexamples of structures that
comply with all the rules except for those we wish to investigate.127

There are several possible cases for rules of one type or the other:

125 In every lattice, S = (0, 1) is a valid example, it is binary logic. In Dn S = (0, a, 1)
or in 2Dn, S = (0, a, b, A, 1) are also valid examples.
126 This number was established by a software program which systematically explored
every possible case. In lattice D3 a two-variable truth table has 5×5=25 values to be
determined. Each one of these may adopt 5 values, then there are 525 ≈ 2.98× 1017

possible two-variable functions. Of course, there are much less implication functions
defined by the rules.
127 This way of proving independence comes from the famous work by David Hilbert
(1862, 1943), Grundlagen der Geometrie (1899) [46] (Foundations of Geometry) where
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• The rule is met in all the dialectic lattices. For example: PDN
and CE are met in every dialectic lattice.128

• The rule is not met in any dialectic lattice. This is the case with
CI, as already mentioned.

• The rule can be derived from other rules, it is not independent.

• The rule is independent from a certain set of other rules.

• It makes no sense to consider this rule. This is the case of PP,
which establishes the coherence with binary logic.

We will begin by analyzing the semantic properties. Failing to com-
ply with the PP rule means violating some of the formal conditions. If
0⇒ 0 = 0 MTE is not met given thatN0⇒ N0 = 1 and it is not 0.129

If 1⇒ 0 = 1 MP is not met, given that a thesis implies a false value. If
0⇒ 1 = 1 MT is not met since in a thesis statement, if the consequent
is a thesis, the antecedent is one as well. If 1 ⇒ 1 = 0 DE is not met
given that a⇒ 1 and b⇒ 1 are theses but 1 = ab ⇒ 1 is not. None of
these cases can have a dialectic value since this would contradict RI. To
sum up, the PP rule is a consequence of rules MP, MT, MTE, DE and
RI. Therefore, it can be omitted from the set of conditions.

The truth table in Table 22 does not meet RI–because 0 ⇒ a = a
is a thesis but 0 ⇒ b = a and not b–but it does all the others. This
counterexample–out of many possible ones–shows the independence
of this property from the remaining ones.

The truth table in Table 23 does not meet I–because a ⇒ a = 0
instead of a but it does the remaining properties, then I is independent.

he systematically constructed “geometries” to demonstrate the independence of his
many axioms. Undoubtedly, Hilbert has been the father of formalism due to his works
and his proposals for topics of research.
128 If a is a thesis, NNa is also one, regardless of whether a = 1 –which is invariant–
or if it is a dialectic value, since the automorphism NN transforms a dialectic value
into another. The reciprocal case is proven in a similar manner. EC is also met because
if a . b is a thesis, it is clear that neither a nor b are 0, then, they are theses.
129 It is worth asking, in this line of reasoning—and those that follow—what logic are
we applying? The answer is immediate: binary logic. For this, the reasoning must be
written without misusing the language. Hypothesis 0 ⇒ 0 = 0 with logical value true.
MTE is applied and thenN0⇒ N0 = 1⇒ 1 = 1 also has logical value true and is not
0. Then, this is the case of the PCE rule of binary logic. Then the hypothesis is false.
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Table 22: Implication function in D3 which does not meet RI.
⇒ 0 a b c 1

0 1 a a a 1

a 0 a 0 0 a

b 0 0 b 0 a

c 0 0 0 c a

1 0 0 0 0 1

Table 23: Implication function in D3 which does not meet I.
⇒ 0 a b c 1

0 1 a b c 1

a 0 0 0 0 a

b 0 0 0 0 b

c 0 0 0 0 c

1 0 0 0 0 1

Table 24 presents an example–out of the 12 possible cases–of an im-
plication that does not meet PM–with a “mixture” of dialectic values–
that meets the remaining conditions.

With this, the non-contradiction and independence of the seman-
tic properties is proven. The case of formal properties is slightly more
complicated, as illustrated by Figure 26. This figure–which is, of course,
not to scale–presents the relations of dependence for the different prop-
erties. The external rectangle indicates that there are 15,625 functions
in D3 that meet the properties RI, I and also, as in every dialectic lat-
tice, CE and PDN. The other rectangles indicate the properties and the
number of cases associated with each property until arriving at the 16
implication functions that meet all the properties.

Table 24: Implication function in D3 which does not meet PM.
⇒ 0 a b c 1

0 1 a b c 1

a 0 a 0 0 b

b 0 0 b 0 c

c 0 0 0 c a

1 0 0 0 0 1
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Naturally, the independence of some properties is deduced from
this diagram. Thus, for example, T is independent from MP, MT, PCE,
given that possible counterexamples exist. The same thing happens
with MTE. MP and MT are independent from PCE due to the exis-
tence of counterexamples. PCE is also independent from DE, DI is
independent from DE.

Figure 26: Implication in D3 and the formal properties.

We will begin by analyzing Russel’s classical definition of the im-
plication function x ⇒ y = N x + y which can be extended directly
to dialectic lattices under the simple condition that N be a strict nega-
tion. Table 25 presents the truth table for D3. This is of interest since it
serves as a counterexample for many formal properties.

Table 25: Truth table of the classic implication in D3.
⇒ 0 a b c 1

0 1 1 1 1 1

a b 1 b 1 1

b c 1 1 c 1

c a a 1 1 1

1 0 a b c 1

This implication function does not meet MT or MP–for instance,
a ⇒ 0 = b is a thesis–but it does meet MTE. It does not comply with
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T, for instance, because 1⇒ a = a and a⇒ 0 = b are theses and lead
to 1 ⇒ 0 being a thesis. It does not meet DE, because a ⇒ 0 = b and
b⇒ 0 = c are theses but 1 = a+ b⇒ 0 is not. It fails to comply with
PCE, because for 1 ⇒ a = a and 1 ⇒ Na = b they are theses, but
N1 = 0 is not. On the other hand, it complies with PDN, DI and CE.

We will consider several cases for purposes of exemplifying the de-
pendence of the properties. The DI rule is independent because there
exists a counterexample in D3 and it is the function given by the truth
table in Table 26. In fact, a ⇒ a is a thesis, but a ⇒ a + b, that is,
a ⇒ 1 is not. The remaining rules are met, except for, naturally, CI.

Table 26: Implication function in D3 which does not meet DI.
⇒ 0 a b c 1

0 1 0 0 0 1

a 0 a 0 0 0

b 0 0 b 0 0

c 0 0 0 c 0

1 0 0 0 0 1

The DE rule has counterexamples in D3, one of which is presented in
Table 27. In fact, a + b = 1 is a thesis. a ⇒ a and b ⇒ a are theses,
but a + b ⇒ a is not a thesis. All the other rules are met, except for,
naturally, CI.

Table 27: Implication function in D3 which does not meet DE.
⇒ 0 a b c 1

0 1 a b c 1

a 0 a c b a

b 0 c b a b

c 0 b a c c

1 0 0 0 0 1

The MTE rule has counterexamples in D3, one of which is pre-
sented in Table 28. In fact, a⇒ 1 es una tesis, pero 0⇒ Na = b is not.
It fails to meet DI as well, because 0⇒ 0 is a thesis but 0⇒ a = 0 + a
is not. All the other rules, including MT, are met, except for, naturally,
CI.
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Table 28: Implication in D3 which does not meet MTE or DI.
⇒ 0 a b c 1

0 1 0 0 0 1

a 0 a 0 0 a

b 0 0 b 0 b

c 0 0 0 c c

1 0 0 0 0 1

This example reveals an error in the classical deductive systems. In
[25, II, 10.23] we can find the following formal scheme (except for the
change in notation) which “proves” MTE:

1) p⇒ q hypothesis

2) p+Np hypothesis

3) Nq subordinate hypothesis

4) p+Np reiteration of 2), subordinated

5) p new hypothesis in second subordination

6) p⇒ q reiteration of 1), in second subordination

7) q MP between 5) and 6)

8) Nq reiteration of 3), in second subordination

9) Np PCE from 5), 7) and 8), in the subordinate

10) Np DE of 4) due to 5) to 9)

11) Nq ⇒ Np implication from 3) to 10).

This reasoning only uses the formal properties MP, PCE and DE,
as complied with in the truth table of Table 28, complies with, which
we know does not meet the property MTE and is a counterexample.130

The error in reasoning–which it is not hard to fall into–is found in the
incorrect application of DE in line 10. A statement can be reiterated
in a subordinate, but not the other way round. Statement 9 cannot be
applied to line 4. A similar error can be found in [25, II, 10.22].

If we take the case of D3, we also obtain:

• Rule T is met in all the functions with MTE and DE.
130 There are other cases in D3 which are also counterexamples, such as the case of
f1, f2, f3–see further below–respectively 0, x, 0 or 0, 1, 0.
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• Rule MP is met in all the functions with PCE.

• Rule PCE is met in all the functions with MTE and DE.

These examples are enough to give ud an idea of the complexity of
the subject of independence of the formal rules. Due to the speed of
calculation, it is not simple to analyze more complex dialectic lattices
given that the number of truth tables to examine in rDn grows bymm2

wherem = r . n+2 is the number of elements to consider in the lattice.
For the simplest case of a two-tier dialectic lattice, 2D4, we have

that m = 9 and, in consequence, 981 ≈ 1, 97× 1077 cases to be exam-
ined. Since this matter does not bear much practical interest, we will
not delve into this issue.

Implication functions in general

In this section, we will analyze the issue of implication functions in any
given dialectic lattice. The starting point is Table 6, page 115, which
presents the truth table for an RI-compliant function. The properties
that make it specific to the case at hand must be added to this.

According to Theorem 30, for the implication function to be ro-
tationally invariant, the five functions in the truth table must be so
as well. We will analyze the case of f1(y), f2(x), f3(y) and f4(x).
The only functions f1(y) that are invariant with regards to the auto-
morphisms of the dialectic lattice elements are 0, y, R y,RR y, . . . , 1,
where R is the rotation of the elements and comparable functions for
the remaining cases. The function g(x, y) must be analyzed in each
case.

Theorem 53 For the formal and semantic properties of implication to
be met, f1 > 0, f2 > 0, f3 = 0 and f4 = 0 must occur.

Proof. The MP property requires that the function f4 = 0. In fact,
if d ⇒ 0, is a thesis, where d is a dialectic value, then 0 would also a
thesis. This occurs for all dialectic values.

If f3 6= 0, for example, with 1 ⇒ a being a thesis, then MTE calls
for Na⇒ 0 to be one as well, against MP.
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The DE property requires that expressions such as B ⇒ A, where
A,B are maximum elements, be false. In fact, if A ⇒ A and B ⇒ A
are theses, then it is concluded that A + B ⇒ A, that is, 1 ⇒ A and
due to MTE, N A⇒ 0 against f4 = 0.

If f1 > 0 then 0⇒ x is a thesis, then, due to MTE,Nx⇒ 1 is also
a thesis and then, f2 > 0. If f2 > 0, then it also occurs that f1 > 0.
Let us consider two maximum elements A,B. From thesis A⇒ A we
obtain, due to IC, that A ⇒ A + B = 1, is also a thesis, it is then
proven.

If f2 = 0, then we will consider two maximum elements, A,B, It
is clear that A is a thesis, but A ⇒ A + B = 1 is not, then, CI would
not be met. Then f2 > 0 and also f1 > 0 because if it were not, then
f2 would not be either. �

Table 29 presents the general structure of the implication function
x ⇒ y as already proven. Since this is obvious, we only need to deter-
mine two functions of a variable and one of two variables, which must
comply with the formal properties of implication.

Table 29: Truth table of the generic implication in rDn.
⇒ 0 dialectic 1

0 1 f1(y) 1

d
ia

le
ct

ic

··
·

0··
·

g(x, y)

f 2
(x

)

1 0 · · · 0 · · · 1

From the previous properties of functions f1, f2 we have that the
only valid cases in rDn –without considering rotations, the PM case–
are the four presented in Table 30. Rotations increase the number of
possible functions.

The RI rule–the function is invariant in one rotation–has already
been used in other functions of dialectic logic. There is nothing special
about it. The analysis of the function g(x, y) is somewhat more com-
plex and relates to formal and semantic rules. The I property requires
that g(x, x) = x for all values.

In order to determine the potential implication functions, it is enough
to verify the remaining formal properties. The systematic search for
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Table 30: Auxiliary functions in rDn.

f1 f2

1 y x

2 1 x

3 y 1

4 1 1

functions only yields 16 cases in the D3 lattice. Table 31 shows the 4
implication functions without “mixing”.

Table 31: The 4 implications without “mixing” in Dn.
⇒ 0 a b c 1

0 1 a b c 1

a 0 a 0 0 a

b 0 0 b 0 b

c 0 0 0 c c

1 0 0 0 0 1

⇒ 0 a b c 1

0 1 1 1 1 1

a 0 a 0 0 a

b 0 0 b 0 b

c 0 0 0 c c

1 0 0 0 0 1

⇒ 0 a b c 1

0 1 a b c 1

a 0 a 0 0 1

b 0 0 b 0 1

c 0 0 0 c 1

1 0 0 0 0 1

⇒ 0 a b c 1

0 1 1 1 1 1

a 0 a 0 0 1

b 0 0 b 0 1

c 0 0 0 c 1

1 0 0 0 0 1

The remaining cases are completed by replacing x forRx,RRx, · · ·
–and similarly for y– in a Dn lattice.

Basic implications in rDn

It is possible to find implication functions in every dialectic lattice rDn.
There is a natural way of constructing implication functions for each
lattice–that meet the appropriate semantic and formal properties–by
means of the lattice’s relation of order (with the exception of 0 ⇒ y
cases).
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Definition 32 In a dialectic lattice L, for two elements x, y, minor
basic implication functions are defined, such as: 1) for x 6= 0, then
for x ≤ y it is defined that x⇒ y = x; 2) for x � y it is defined that
x⇒ y = 0; 3) for binary values PP is met; 4) the f1 functions may be
y or 1 and f2 may be x or 1.

While not in an analytical manner but in its basic idea, this def-
inition extends the classical definition: 0 ⇒ 0 = 1, 0 ⇒ 1 = 1,
1⇒ 1 = 1 and 1⇒ 0 = 0, that is, x ≤ y is true and x � y is false.

Theorem 54 The function defined in 32 meets the formal properties
DI, CE, DE, PNN, T, MP, MTE, PC and the semantic properties PP, I,
RI and PM.

Proof. We will demonstrate each one of the properties in order,
first for x 6= 0 and then for x = 0:

DI If x ⇒ y = x then x ≤ y ≤ x + y, then x ⇒ x + y = x is a
thesis. If 0⇒ y its value is y by definition of f1 and it is a thesis.
The case y = 0 is met by definition.

CE If x . y are theses, then x . y > 0 and it is met that x > 0 and
y > 0, Then, both are theses. The case x = 0 has no use.

MP If x, x⇒ y are theses, 0 < x and x ≤ y. Then 0 < x ≤ y. Then
y is a thesis. The case x = 0 has no use.

DE If x + y is a thesis and x ⇒ z, y ⇒ z, then x ≤ z, y ≤ z, then
x+ y ≤ z, that is, x+ y ⇒ z. Due to MP, z is a thesis. The case
x = 0 is met due to the definition of f1.

PNN If x is a thesis, NNx is one as well, in the case x = 1 due to the
definition of the negation and in the remaining case, due to the
automorphism NN transforming one dialectic value into an-
other. The case x = 0 has no use.

T The relation of order in the lattice has the transitive property.
Then, if x ⇒ y and y ⇒ z are theses, it is met that x ≤ y ≤ z

182



Implication

then x ⇒ z is a thesis. The case x = 0 holds true, due to the
definition of f1, 0→ y = y that is, 0 < y ≤ z and z are theses.

MTE If x ⇒ y complies with x ≤ y, then Ny ≤ Nx due to the
definition of the negation, where it results in that Ny ⇒ Nx.
If 0 ⇒ y, which is a thesis by the definition of f1, it is met that
Ny ⇒ 1 by the definition of f2. If x ⇒ 1, which is a thesis by
the definition of f2, 0⇒ Nx holds true, which is a thesis by the
definition of f1.

PCE If x ⇒ y and x ⇒ Ny are theses, then if x = 0, which may
occur due to the definition of f1, it is clear that N0 = 1 is a
thesis. The case x = 1 is impossible since f3 = 0. If x has a
dialectic value, then Nx is a thesis.

PP Is part of the definition of the implication function.

RI The function is rotationally invariant because both f1 and f2 are,
as well as the relation x ≤ y.

I It is clear that d ≤ d, then d⇒ d = d for every dialectic value d.

PM The principle of mixture is met in some cases due to d ⇒ d =
d and the definitions of f1 and f2 are without rotation of the
elements.

Finally, since we have two possible alternatives for f1, f2, there are 4
functions defined in this way. The result is general for all rDn lattices.
With this, the theorem is proven. �

It is important to note that this theorem is valid both for common as
well as exotic negations. Only the monotony property and the one that
states that the negation of a dialectic value is another dialectic value
are involved in the demonstration. It is also not necessary for it to be
a strict negation. A major consequence from a practical point of view
consists in noting that, in order to do a systematic search for implica-
tion functions, it is enough to use N0, for instance. The function thus
obtained is valid for all the other negations of the lattice by RI and the
relations between negations and rotations.
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Theorem 55 The implication function x⇒ y defined is monotonous,
decreasing in x and increasing in y, for the dialectic values.

Proof. Let us consider only dialectic values. If z ≤ x, since x ≤ y
then z ≤ y, then z ⇒ y is a thesis. It is similarly proven for y ≤ w. �

A consequence of this theorem allows obtaining other implication
functions with similar characteristics to those in this theorem.

Theorem 56 If in the definition of minor implication, condition 1) is
replaced by “for x 6= 0, then for x ≤ y, x ⇒ y = y is defined”,
4 functions are also obtained that meet the formal properties DI, CE,
DE, PDN, T, MP, MTE, PC and the semantic properties PP, RI, I, PM.
They are referred to as major basic implications.

Proof. In the previous demonstration, only the value of the im-
plication function appears in property DI, then all the other proper-
ties are valid. In the case of DI, only the following text is modified
in the demonstration: “If x ⇒ y = y then x ≤ y ≤ x + y, then
x⇒ x+ y = y is a thesis.” �

In Dn lattices, major and minor implications match–this is not the
case in rDn lattices of rank greater than 1, as can be seen below.

There are other implication functions which are neither minor nor
major, for example, the one presented in Table 23: by failing to comply
with I, it does not derive from the relation of order that this condition
calls for. If the RI condition is not required in D3, 4080 implication
functions are possible.

The truth table partially contains a diagonal table. Let us assume
that we were to order the table values by increasing dialectic values.
After 0, atoms appear and so on. Figure 32 illustrates this situation.

Implications in Dn

We will consider the basic implication in D4 as an example of the gen-
eral case in Dn. According to the proposal of the order relation, Table
33 gives us the truth table. This implication allows us to obtain uni-
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Table 32: Analysis of implication in rDn.
⇒ 0 a · · · k · · · 1

0 1 f1 f1 1

a 0 a · · · 0
...

...
...

. . .
...

... f2

k 0 0 · · · k

0
...

...
...

... f2

0

1 0 0 0 1

versally valid results based on dialectic statements. We will take the
statement a ⇒ x = a as an example, where x is the unknown. Since
a is a thesis, we conclude that the possible values are x = a, 1 as a
consequence of Modus Ponens.

Table 33: Table of implication in D4.
⇒ 0 a b c d 1

0 1 a b c d 1

a 0 a 0 0 0 a

b 0 0 b 0 0 b

c 0 0 0 c 0 c

d 0 0 0 0 d d

1 0 0 0 0 0 1

Aside from these implication functions, there are the three addi-
tional ones with value 1, such as those presented in Table 31 for D3.

Theorem 57 In Dn, basic implications are the only possibility.

Proof. Let us in fact assume that, for example, a ⇒ h is a thesis,
where a, h are two dialectic values. R is the lattice rotation. There is a
rotation Rk such that h = Rk a. We have, then, that if a ⇒ Rk a is
a thesis, it also is one by rotating Rn−k, then Rn−k a ⇒ a is a thesis,
given that Rn in Dn is the identity. If Rn−k a 6= a, because of the DE
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property, from a⇒ a andRn−k a⇒ awe obtain 1 = a+Rn−k a⇒ a
contradicting that f3 = 0. Then, by applying the rotation, the function
g(x, y) can only be different from 0 in the diagonal. Rule I completes
the demonstration. �

Implications in 2Dn

Table 34 presents the truth table for the minor basic implication func-
tion in lattice 2D4 as the first example of the general case.

Table 34: Table of the minor implication in 2D4.
⇒ 0 a b c d A B C D 1

0 1 a b c d A B C D 1

a 0 a 0 0 0 a 0 0 a a

b 0 0 b 0 0 b b 0 0 b

c 0 0 0 c 0 0 c c 0 c

d 0 0 0 0 d 0 0 d d d

A 0 0 0 0 0 A 0 0 0 A

B 0 0 0 0 0 0 B 0 0 B

C 0 0 0 0 0 0 0 C 0 C

D 0 0 0 0 0 0 0 0 D C

1 0 0 0 0 0 0 0 0 0 1

Naturally, functions f1, f2 from Table 30 also apply, that lead to
three additional implication functions. In 2Dn lattices, the major ba-
sic implication is different from the minor, and Table 35 presents an
example of a truth table.

As in the minor case, replacing f1, f2 with the value 1 yields three
additional implication functions.

Theorem 58 In 2Dn, basic implications are the only possibilities that
comply with the PM condition.

Proof. In order to demonstrate the theorem, we will refer to atoms
as di and to the maximum elements of 2Dn as Di. Sub-index i is con-
sidered n-module. If R is the lattice rotation and N is the negation
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Table 35: Table of the major implication in 2D4.
⇒ 0 a b c d A B C D 1

0 1 a b c d A B C D 1

a 0 a 0 0 0 A 0 0 D a

b 0 0 b 0 0 A B 0 0 b

c 0 0 0 c 0 0 B C 0 c

d 0 0 0 0 d 0 0 C D d

A 0 0 0 0 0 A 0 0 0 A

B 0 0 0 0 0 0 B 0 0 B

C 0 0 0 0 0 0 0 C 0 C

D 0 0 0 0 0 0 0 0 D C

1 0 0 0 0 0 0 0 0 0 1

considered, that carry out the following transformations:

Rdi = di+1 (i mod n) RDi = Di+1 (i mod n)

N di = Di+1 (i mod n) N Di = di+2 (i mod n).

We need to identify the function g(x, y). For that purpose, we will
successively consider the four “quadrants” in which it is organized ac-
cording to the dialectic values. The diagonal immediately follows. Due
to property I, then di ⇒ di = di and Di ⇒ Di = Di. The remain-
ing cases are based on the property that the sum of any two maximum
elements in the lattice equals 1.

• Cuadrant D–D. If the same reasoning used in Dn for maximum
and minimum elements is used and we have that D0 ⇒ Dk =
D0 ⇒ RkD0, then R−kD0 ⇒ D0, Then, due to ED, it follows
that 1 = D0 +R−kD0 ⇒ D0 would be a thesis against f3 = 0.
As a consequence, D0 ⇒ Dk = 0 for every k 6= 0. As a result,
applying the rotation, Dj ⇒ Dk = 0 for every j 6= k.

• Cuadrant d–d. Let us consider dj ⇒ dk. By applying MTE, we
obtain N dk ⇒ N dj = Dk+1 ⇒ Dj+1 = 0, then dj ⇒ dk = 0
for every j 6= k.

• Cuadrant D–d. Let us assume that D0 ⇒ di is a thesis. By ap-
plying MTE, we have that N di ⇒ N D0 = Di+1 ⇒ d2 which
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is also a thesis. By applying the rotation R2−i to the first impli-
cation, we obtain R2−iD0 ⇒ R2−i di = D2−i ⇒ d2, which is
also a thesis. Due to DE we have that Di+1 +D2−i ⇒ d2 which
is also a thesis. But the sum of two different maximum elements
equals 1, then for i + 1 − (2 − i) = 2 i − 1 = ±1,±3,±5 · · ·
they are theses. For i = 0, 1 we obtain 1 = D2 +D1 ⇒ d2 = 0
and because f3 = 0, then the starting hypothesis is false. Ulti-
mately, D0 ⇒ d1 = 0 and D0 ⇒ D0 = 0. Due to the rotation,
Dj ⇒ dj+1 = 0 and Dj ⇒ dj = 0. For i = 2,−1 we obtain
D0 ⇒ d2 = 0 and D0 ⇒ d−1 = 0 and due to the rotation,
Dj ⇒ dj+2 = 0 and Dj ⇒ dj−1 = 0. For i = 3,−2 we obtain
D0 ⇒ d3 = 0 and D0 ⇒ d−2 = 0 and due to the rotation,
Dj ⇒ dj+3 = 0 and Dj ⇒ dj−2 = 0 and so on. Then, all the
elements verify that Dj ⇒ dk = 0.

• Cuadrant d–D. The demonstration is similar to that of the pre-
vious quadrant. We will assume that d0 ⇒ Di is a thesis. By
Applying MTE, we have that di+2 ⇒ D1 which is also a the-
sis. By applying the rotation R1−i to the first implication, we
obtain d1−i ⇒ D1 which is also a thesis. Due to DE we have
that di+2 + d1−i ⇒ D1, which is also a thesis. But the sum of
two atoms with indexes that are separated by 2 or more is worth
1, which contradicts f3 = 0, Then, the starting hypothesis is
false. Then, for i + 2 − (1 − i) = 2 i + 1 = ±3,±5, · · · they
are theses. For i = 1,−2 we obtain that d0 ⇒ D1 = 0 and
d0 ⇒ D−2 = 0. For i = 2,−3 we obtain that d0 ⇒ D2 = 0 and
d0 ⇒ D−3 = 0 and so on. Then, by rotation, di ⇒ Di+1 = 0,
di ⇒ Di+2 = 0 and similar ones also occur. di ⇒ Di−2 = 0,
di ⇒ Di−3 = 0 and similar are null. Nothing is known of
di ⇒ Di or di ⇒ Di−1.

• If we consider the thesis di ⇒ di, di ⇒ di + di+1 = Di and
di ⇒ di + di−1 = Di−1 are also theses. To meet PM, it must
occur that di ⇒ Di worth either di or Di, and the same thing
happens in the other case.

This completes the demonstration. �
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If we omit the PM property–a mixture of the dialectic values–in
quadrant d–D, the values can be replaced by others obtained by ro-
tation. Thus, for instance, in Table 35 the value can be replaced by
a ⇒ A = B and the corresponding values by rotation. This function
complies with all the formal and semantic properties except for PM.

It is worth noting that for the demonstration of this theorem, the
properties RI, I, PM, DE and MTE have been used directly and MTE,
MP and DE have been used to prove that f3 = 0. Something similar
occurs with the demonstration in Dn. In these two cases, then, RI,
I, PM, MP, DE and MTE are enough to verify that the other formal
and semantic properties are met, something which is also suggested by
Figure 26. It is a reasonable conjecture that this result is general for all
dialectic lattices, but we will not delve in this matter since it would only
be of interest from a theoretical standpoint and does not contribute
much to dialectic logic itself.

Implications in 3Dn

Figure 27: Lattice 3D5 as an example of 3Dn.

It is worth considering the implication function in lattice 3D5, see
Figure 27, since it presents a major variation of the truth table. Table
36 presents the truth table that corresponds to the implication defined
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by the order relation in the lattice.

Table 36: Table of the minor implication in 3D4.
⇒ 0 a b c d e p q r s t A B C D E 1

0 1 a b c d e p q r s t A B C D E 1

a 0 a 0 0 0 0 a 0 0 0 a a 0 0 0 a a

b 0 0 b 0 0 0 b b 0 0 0 b b 0 0 0 b

c 0 0 0 c 0 0 0 c c 0 0 0 c c 0 0 c

d 0 0 0 0 d 0 0 0 d d 0 0 0 d d 0 d

e 0 0 0 0 0 e 0 0 0 e e 0 0 0 e e e

p 0 0 0 0 0 0 p 0 0 0 0 p 0 0 0 p p

q 0 0 0 0 0 0 0 q 0 0 0 q q 0 0 0 q

r 0 0 0 0 0 0 0 0 r 0 0 0 r r 0 0 r

s 0 0 0 0 0 0 0 0 0 s 0 0 0 s s 0 s

t 0 0 0 0 0 0 0 0 0 0 t 0 0 0 t t t

A 0 0 0 0 0 0 0 0 0 0 0 A 0 0 0 0 A

B 0 0 0 0 0 0 0 0 0 0 0 0 B 0 0 0 B

C 0 0 0 0 0 0 0 0 0 0 0 0 0 C 0 0 C

D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D 0 D

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E E

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

This result illustrates the minor basic implication in all the rDn
lattices. The major case can be defined in a similar manner.

The demonstration that the formal and semantic properties lead
to a basic implication is somewhat more complicated than in the case
of 2Dn. Although in general terms the arguments for the quadrants
formed by atoms and maximum elements apply, three new quadrants
appear here: for central elements and central elements with atoms and
maximum elements, in which a new argumentation must be devel-
oped. As in the previous cases, this argumentation is strongly based
on formal properties MTE and DE and in the properties of the rota-
tion. The demonstration will not be expanded here.

Implication and the CI property

This section gives special consideration to the conjunction introduc-
tion property, IC, a property that does not meet the dialectic implica-
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tion that we have studied. Regardless of this, it is possible to construct
theories without compliance with CI being a restriction towards the
rules of deduction.

Let us now consider a theory in which axioms have logical values
belonging to a cone S, see Definition 14. It is clear that all the theorems
in this theory will also belong to S due to the principle of mixture, PM.
In fact, the principle of mixture keeps the implication function from
constructing a theorem outside of the cone S, given that the dialectic
values are not mixed together. This situation offers an important se-
mantic clue on dialectic implication.

For these logical systems, the property CI of the implication is valid,
since if two statements belonging to the theory have logical values
x, y ∈ S, then the statement x . y ∈ S. In this way, we can assert that any
theory whose axioms have logical values that belong to a cone, comply
with all the formal properties of implication.

In conclusion, every argument that proves to be valid when using
formal rules is also valid for the dialectic values in a cone. This allows us
to make generalizations of the mathematical theories and those of the
natural sciences–which are strongly supported by logical arguments–
to dialectic values, without even the slightest alteration. This topic is
analyzed in detail in the final chapter of this study.
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Introduction

A propositional function is an application from the real universe–or a
fragment of this universe–onto a lattice. According to traditional logic,
propositional functions are abstract functions. In materialist dialectics,
propositional functions represent material properties. For this reason,
we will add the term “material” to most statements on propositional
functions.

As in traditional logic, one-variable propositional functions may
be referred to as properties and many-variable propositional functions
as relations. We will consider the simple proposition

Lope loves.

In reality, this proposition is a material instance of property F (u) of
the material variable u that covers the group of human beings or any
other desired group. The property can be expressed as:131

F (u) = u loves.

It is interesting to research the logical values that this proposition
function acquires. In binary logic, given that there are only two logical
values, we have two options. In the field of dialectics, it is an entirely
different scenario. In this case, it is worth wondering what values the
propositional function may take on. It is understandable that this func-
tion would fail to take a “true” logical value for any x, since this fact is
almost impossible to interpret. We cannot understand how, upon tak-
ing the value “true”, a proposition may be compatible with the material
or actual meaning, for example, of the property “love”. It would seem
that–with the exception of some saint with a pathological incapacity to

131 It is worth noting that this proposition is different–although similar to–the relation
P (u, v) = u loves v.
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hate–, for common people, feelings are all mixed up and one is capable
of “not loving” either at times (temporary logic) or by degree (modal
logic).132 Practically the same reasons can be argued for the logical
value “false”.

Let us think now of a different problem: what is the opposite prop-
erty of F (x)? The answer is complex and multi-faceted. As noted ear-
lier, the following propositions

H(u) = u hates

I(u) = u is a religious fanatic

J(u) = u is out of his mind

K(u) = u is dead

L(u) = u is a character in a work of fiction

and many similar ones that are clearly linked to the emotional state of
the individual, are all properties that oppose F (u) in some way, ac-
cording to their material meaning. This is why we are interested in
characterizing the dialectic property of the material contradiction in a
precise manner.

Definition 33 Two properties F (u) and G(u) are referred to as ma-
terial opposites if, for some defined negation N , for every value x of
the material variable u, F (x) = N G(x).

The notion of material opposites is a basic notion in dialectics. The
concept of property is usual in mathematics. In this case, it is a propo-
sitional function that only takes on the values “true” or “false”. The
importance of extending this notion to dialectics stems from the fact
that the function may acquire dialectic values. In fact, most of the
properties we use in everyday language only take on dialectic values,
because nothing in our everyday lives is entirely “true” or “false”, but
rather something in between.

132 It would also appear to be a poetic license–used in a famous sonnet by Quevedo–
that a person can “love” beyond death.
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Hegelian logic–and the more complex dialectics–are able to resolve
this issue. Given that Hegelian dialectics have three dialectic values, any
propositional function that acquires dialectic values has a large number
of opposing properties. For every dialectic value, there are two opposed
dialectic values. As a result, a property that only acquires dialectic val-
ues, such as F (u), has a large number of opposite functions. As an
example, a Hegelian function such as F (u), defined over a set that has
n material instances–all the human beings, for instance–(potentially)
has 2n opposite propositional functions. The existence of more than
two values that are opposite between themselves is the quantum leap
that provokes the change in quality. It is, once again, the application of
the laws of dialectics.

Classic quantifiers

In binary logic, the notion of a quantifier is an essential element in the
study of propositional functions. These ideas extend to dialectics in a
straightforward manner since the operations “.” and “+” have already
been defined. In any given lattice, quantifiers extend the properties of
the existential and the universal quantifier, which, just like in binary
logic, is formally defined.

Definition 34 In every dialectic lattice, if F (u) is a propositional
function in the variable ui ∈ C, the existential and universal quan-
tifiers can be defined as

∃uF (u) = F (u1)+F (u2)+ . . . ∀uF (u) = F (u1) . F (u2) . · · ·

extensive to the values of the material variables that are being quanti-
fied and u representing a set of material variables u = (x, y, . . .).

The following theorem analyzes the behavior of the universal quan-
tifier in a dialectic lattice.
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Theorem 59 The necessary and sufficient condition for ∀uF (u) to be
0 is that some instance of the function F (u) be 0. The necessary and
sufficient condition for the universal quantifier to be 1 is that all the
instances of the function be 1. The necessary and sufficient condition
for the universal quantifier to be a dialectic value d is that all the values
in the function belong to a cone d > 0.

Proof. For a product to be 0, at least one factor must be 0. Re-
ciprocally, if a factor is 0, the product is null. For a product to be 1,
it is necessary that all factors be 1 and this condition is sufficient. If
∀uF (u) = d is a dialectic value d > 0, then every value F (ui) verifies
that F (ui) . (∀uF (u)) = ∀uF (u) due to the application of the com-
mutative, associative and idempotent properties. Then, F (ui) . d = d,
that is F (ui) ≥ d and belongs to the cone of the elements such that
x ≥ d as needed to be proven. Reciprocally, if for every i, F (ui) ≥ d,
where d > 0 then ∀uF (u) ≥ d > 0 and it is a thesis. �

The following theorem analyzes the dialectic existential quantifier.

Theorem 60 The necessary and sufficient condition for ∃uF (u) to be
0 is that all instances of the function F (u) be 0. The necessary and
sufficient condition for the existential quantifier to be 1 is that some
instance of the function be 1. The necessary and sufficient condition for
the existential quantifier to be a dialectic value is that all the values in
the function belong to an inverted cone d < 1.

Proof.133 For a sum to be 0, all the summands must be 0 and recip-
rocally. For a sum to be 1, it is enough for an instance of the function
to be 1 and reciprocally. If ∃uF (u) = d is a dialectic value d < 1, then
F (ui) + ∃uF (u) = ∃uF (u) due to the application of the commu-
tative, associative and idempotent properties. Then, F (ui) + d = d,
that is to say F (ui) ≤ d < 1 and belongs to the inverted cone of the
elements such that x ≤ d as needed to be proven. Reciprocally, if for

133 It is possible to demonstrate this by applying Theorem 65 directly.

195



An Inquiry into Dialectic Logic

every i, F (ui) ≤ d, where d < 1 then ∀uF (u) ≥ d < 1 and it is a
thesis. �

This definition generalizes the quantifiers in binary logic and pre-
serves the fundamental semantics of existence and universality, as shown
in the following theorem.

Theorem 61 For the quantifiers ∀, ∃ the following holds true, if p is
an instance of the variable u:

∀uF (u)⇒ F (p) F (p)⇒ ∃uF (u).

Proof. The following stems from the definition of quantifier, prop-
erties A, C and the monotony of the product, for every lattice value

∀uF (u) = F (u1) . · · · . F (p) . · · · ≤ F (p)

given that p is one of the instances of variable u. Then ∀uF (u) ⇒
F (p) by Definition 32. In a dual manner, the following holds true

F (p) ≤ F (u1) + · · ·+ F (p) + · · · = ∃uF (u)

Then F (p)⇒ ∃uF (u). �

Dialectic quantifiers in general

Extending the definition of classic quantifiers to dialectic logic lattices
not only follows from the formal definition but also includes the ex-
pected functional properties. In this sense, the logic of predicates can
be generalized, just as a generalization can be made based on implica-
tion. However, there is good reason to think that this method of op-
eration leaves out many features from dialectics. In his Science of Logic
[42], Hegel devotes a large volume to what he refers to as the “theory
of being”. This fact alone should warn us that the “theory of being” (or
dialectic quantifiers, from a formal point of view) can be quite more
complex than merely extending the notions behind binary logic.

We will use a formal methodological path to analyze the problem of
quantifiers. As we have considered before, binary logic is an oversim-
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plification, an all-too-radical homomorphism of the structural prop-
erties of the Universe. Because of this simplification, binary logic can
only offer clues as to the problem.

According to this, we can elaborate the general definition of a di-
alectic quantifier.

Definition 35 The quantifier of the propositional function F (u),
associated with the non-trivial dialectic operation represented by �,
idempotent, associative, commutative, rotationally invariant (I, A, C,
RI), aside from the monotony properties BP and DP and of permanence
of the binary rules PP, is referred to as the expression:

uF (u) = F (u1) � F (u2) � . . .

extensive to all the values of the material variables on which the quan-
tification is being done. The variable u can represent a set of material
variables u = (x, y, . . .).

In this definition, the trivial operation � (x � x = x, and the re-
maining values 0) meet the properties I, A, C, RI, BP and DP but lack
any application of interest.

As immediately follows, this definition generalizes the one made
by binary logic and contains the existential and universal quantifiers
defined in binary logic as specific cases. In fact, given that the opera-
tions “.” and “+”, meet the properties I, A, C, RI, BP and DP, the two
quantifiers–respectively ∀ and ∃–are comprised within the definition.
It is possible to demonstrate the inverse result.

Theorem 62 The only non-trivial, dialectic quantifiers in the binary
lattice B = D0 are those that derive from the conjunction and disjunc-
tion operations.

Proof. The demonstration amounts to noting that only the func-
tions I, A, C, RI out of the 16 functions that are possible in this lattice,
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are the ones indicated. �

Theorem 62 ensures the coherence of the definitions, but still leaves
a great deal of open terrain.134

Theorem 63 If we consider a quantifier and its associated composi-
tion operation �, the following property holds true

u (F (u) �G(u)) = uF (u) � xG(u)

Proof. It follows immediately based on the associative and com-
mutative property of the composition �. �

Definition 35 establishes a clear connection between penetration
functions and quantifiers. The panorama for quantifiers is now com-
pletely defined. There are three major groups associated with the ideas
of “being” and these sets are linked to the major groups of logical func-
tions: the basic lattice operations and penetrations. It is natural, then,
for two families of dialectic quantifiers to exist, ample quantifiers orig-
inated in ample penetrations, and strict quantifiers, originated in strict
penetrations. We will study these cases in the following sections.

Ample dialectic quantifiers

One type of quantifier is lost entirely in the simplification made by
binary logic. We use the notation ∀ and ∃ with the meaning given in
Definition 34 for classic quantifiers, and , n respectively, for those
obtained by means of the ample penetration functions ∗, ∗n.

134 Therefore, for example, in Dn lattices, there are four possible non-trivial functions:
conjunction, disjunction and the two penetration functions.
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Theorem 64 For quantifiers and n and every propositional func-
tion, the following relations are met:

∀uF (u) ≤ uF (u) ≤ ∃uF (u)

∀uF (u) ≤ nuF (u) ≤ ∃uF (u)

extensive to all the values of the material variables on which the quan-
tification is being done. The variable u can represent a set of material
variables u = (x, y, . . .).

Proof. The properties follow immediately based on the monotony
of the functions involved. In fact, if we consider the case of ∗, by defi-
nition

uF (u) = F (u1) ∗ F (u2) ∗ F (u3) ∗ · · ·

It is clear that the following is met, due to the associative property and
due to BP and DP

F (u1) ∗ (F (u2) ∗ F (u3) ∗ · · · ) ≤ F (u1) + (F (u2) ∗ F (u3) ∗ · · · )

It is also clear that

F (u2) ∗ (F (u3) ∗ · · · ) ≤ F (u2) + (F (u3) ∗ · · · )

By repeatedly applying these inequalities, the following occurs

F (u1) ∗ F (u2) ∗ F (u3) ∗ · · · ≤ F (u1) + F (u2) + F (u3) + · · ·

with which it is proven that uF (u) ≤ ∃uF (u). In a dual manner,
it is proven for the product ∀uF (u) ≤ uF (u). Then, the theorem
holds true for the quantifier . The same relations are met for n given
that ∗n complies with the same inequalities as ∗, thus proving the the-
orem. �

The connection between negations and ∗, ∗n is extensive to quan-
tifiers.
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Theorem 65 For every quantifier and every negation N , the fol-
lowing holds true: N uF (u) = nuNF (u) and, in a dual man-
ner, interchanging and n. Analogously, the following holds true:
N ∀uF (u) = ∃uNF (u) and, in a dual manner, interchanging ∀
and ∃.

Proof. If we consider the expression, which is valid due to the as-
sociative property of ∗,

N uF (u) = N(F (u1) ∗ F (u2) ∗ F (U3) ∗ . . .)
= N(F (u1) ∗ (F (u2) ∗ F (U3) ∗ . . .)) =

= NF (u1) ∗n N((F (u2) ∗ F (U3) ∗ . . .)) =

· · ·
= NF (u1) ∗n NF (u2) ∗n NF (U3) ∗n . . . = nuNF (u)

The theorem is proven by recurrence. The dual case is proven in an
equal manner. In the case of classic quantifiers, the demonstration is
the same, replacing the penetration functions with the sum and the
product. �

The definitions made allow us to research the basic properties of
ample quantifiers by extending the properties of binary logic.

Theorem 66 The necessary and sufficient condition for nuF (u) to
be a thesis is that all the values F (ui) are theses.

Proof. For nuF (u) = 0, some F (ui) = 0. Then, in order for the
quantifier to be a thesis, all the values must be a thesis. Reciprocally, if
all the values are theses, the result is not 0. �

This result shows that the quantifier n can be referred to as “uni-
versal”, extending the binary notion of “true” to “thesis”, as is done in
dialectics.
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Theorem 67 The necessary and sufficient condition for the quantifier
uF (u) to be worth 1 is that at least one instance i is F (ui) = 1. The

necessary and sufficient condition for uF (u) to be a dialectic value is
that for every i, F (ui) ≥ d, where d > 0 is a thesis value in the lattice.
Equivalently, the values in the function belong to a non-trivial cone in
the lattice. In the remaining cases, it is worth 0.

Proof. Since x ∗ 1 = 1 occurs, it is clear that if an instance of
the function is worth 1, the quantifier is worth 1. Reciprocally, it is
necessary for some instance to be worth 1 for the result to be 1. It is
clear that if for every i, F (ui) ≥ d holds true, then, d ≤ ∀uF (u) ≤
uF (u), (Theorem 64) and the quantifier is a thesis. Reciprocally, if
uF (u) = d then 0 < d < 1 holds true. Then, every F (ui) 6= 1 and

therefore it occurs that ∀uF (u) = uF (u) (see Definition 26) and
Theorem 59 applies. The quantifier is worth 0 in the remaining cases.
�

The symmetrical quantifier meets a theorem that is also symmetri-
cal.

Theorem 68 The necessary and sufficient condition for it to be worth
0 is that at least one instance i be F (ui) = 0. The necessary and suf-
ficient condition for uF (u) to be a dialectic value is that for every i,
F (ui) ≤ d, where d < 1 is a dialectic value in the lattice. Equiva-
lently, the values in the function belong to a non-trivial inverted cone
in the lattice. In the remaining cases, it is worth 1.

Proof. Let us consider the function N−1F (u) and the quantifier
uN−1F (u) = N−1 nuF (u) due to Theorem 65. By applying the

negation to the equality, we have that nuF (u) = N uN−1F (u).
Theorem 67 allows us to demonstrate the conditions. For x = nuF (u)
to be worth 0, it must occur that uN−1F (u) be worth 1, then at
least one instance i of N−1F (ui) = 0 to be worth 0, it must oc-
cur that F (ui) = 1. For the value of the quantifier to be dialectic,
for every i, N−1F (ui) ≥ d, where d > 0 is a thesis value, that is,
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F (ui) ≤ N d = d′ < 1.135 The quantifier is worth 1 in the remaining
cases.�

Ample quantifiers behave differently with regards to the properties
in Theorem 61, as shown in the following theorem.

Theorem 69 For the ample quantifier , if p is an instance of the
variable u, it occurs that uF (u)⇒ F (p), provided the quantifier is
not worth 1.

Proof. Given d = uF (u). If d = 0, the theorem is valid in a
trivial manner. If 1 > d > 0 then F (p) ≥ d is met due to Theorem
67, then the implication is met. If d = 1, there are cases where the
expression is not valid, it suffices with F (p) being either 0 or dialectic.
�

Theorem 70 For the ample quantifier n if p is an instance of variable
u, F (p)⇒ nuF (u), holds true, as long as the quantifier is not worth
0.

Proof. Given d = uF (u). If d = 1 the theorem is valid in a
trivial manner. If 1 > d > 0 then F (p) ≤ d holds true due to Theorem
68, then the implication is met. If d = 0, there are cases in which the
expression is not valid, it suffices with F (p) being either 1 or dialectic.
�

Table 37 presents the main properties of the dialectic quantifiers
analyzed in the last sections.

Strict dialectic quantifiers

As we have already analyzed, there is a second type of penetration func-
tion that we have referred to as strict, that only occurs in odd-rank

135 The theorem can also be proven in a direct manner based on the definition of the
quantifier. This demonstration illustrates how to employ the existing duality between

and
n

.
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Table 37: Summary of dialectic quantifiers.
∃ ∀

n

false ∀i F (ui) = 0 ∃i F (ui) = 0 other cases ∃i F (ui) = 0

thesis ∀i F (ui) ≤ d
d < 1

∀i F (ui) ≥ d
d > 0

∀i F (ui) ≥ d
d > 0

∀i F (ui) ≤ d
d < 1

true ∃i F (ui) = 1 ∀i F (ui) = 1 ∃i F (ui) = 1 other cases

lattices. The corresponding quantifiers are associated with these func-
tions. The only case of interest is for penetrations ∗̄d, where the follow-
ing theorem holds true.

Definition 36 The strict quantifier ¯ d
of the propositional function

F (u), associated with the strict dialectic penetration ∗̄d, idempotent,
associative, commutative, rotationally invariant (I, A, C, RI), aside
from the properties BP and DP, is referred to as the expression:

¯ d
uF (u) = F (u1) ∗̄d F (u2) ∗̄d . . .

extensive to all the values of the material variables on which the quan-
tification is being done. The variable u can represent a set of material
variables u = (x, y, . . .).

These quantifiers have different properties than ample quantifiers.
The most important property occurs when the values of the material
variables belong to a cone.

Theorem 71 The strict quantifiers of a propositional functionl F (u)
take on thesis value if and only if all the instances ui, of the function
are within a cone ui ≥ d > 0 inside the lattice. They are worth 1 only
if all the instances meet F (ui) = 1. In all the remaining cases, they
are worth 0.

Proof. Proof. If they are in a cone such as the one indicated, the
quantifier is a thesis. Reciprocally, for the quantifier not to be null,
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all the instances must be in a cone such as the one indicated. For the
result of the quantifier to be worth 1, the only possibility, in the case of
a penetration ∗̄d, is that all the instances be worth 1. �

The semantics of dialectic quantifiers

The contribution of dialectic quantifiers to the general logic is varied,
yet has no actual relevance for the study at hand. To begin with, exis-
tential and universal quantifiers extend the notions of binary logic. This
extension is quite significant when analyzing the applications of dialec-
tics in the sciences. As it becomes accepted that mathematical and sci-
entific theories may take on dialectic values, the properties of impli-
cation and the logic of propositional functions must also be extended
with the same formal properties. We will analyze this in the final chap-
ter.

This brings about the question: what is the contribution of the new
dialectic quantifiers as derived from penetration functions? The answer
to this does not come from science, but from the spontaneous logic of
natural languages. We will go over the problem of the “illogicality” of
the definition of love, see page 19.

According to our analysis, the sonnets by Petrarca, Lope and so
many others, are not a dialectic quantifier on human passions—especially
those defined with regards to strict penetrations. If we go back to Lope
de Vega’s description from page 129:

(to faint, to dare, to be enraged), (coarse, tender), (liberal,
elusive, encouraged), (mortal, dead, alive), (loyal, traitor),
(coward and brave).

In order to formalize this description, we need to introduce several
propositional functions to be applied on the universe of human beings
u, such as:

P1(u) = u faints

P2(u) = u dares

P3(u) = u is enraged
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This example of three human states illustrates the idea. Each of
these propositional functions describes a passion136 and they apply to
all human beings. At the same time, they cannot but take on a dialectic
value: no one can be entirely enraged–we may be enraged at times and
calm, indifferent or sleeping at other moments, just to mention a few
possibilities. Let us, then, accept that these propositional functions can
only take on dialectic values.

If move on to the subject of the commas, as we have previously an-
alyzed, the comma represents a logical function with the properties I,
A, C and with an intermediate value between conjunction and disjunc-
tion. In other words, a penetration function. With these considera-
tions, the first parenthesis in Lope’s definition can be formalized as

P1(u) ∗̄d P2(u) ∗̄d P3(u).

It is legitimate to wonder why we should use a strict, rather than
an ample, penetration. There are various possible reasons for this. The
first one may be that ample penetrations have a dual version obtained
by negation. It seems reasonably clear that the passions referred to in
this case lack a well-defined negation and this is one of the reasons. A
second reason is found in the use of pairs or triads of passions and this
strongly points to a strict penetration, which better suits the condition
of an intermediate state between two opposite situations.137

The same technique can be applied to the other pairs or triads of
human passions. Thus, for example, we could define:

P4(u) = u is coarse

P5(u) = u is tender

and the formalization of the description as

P4(u) ∗̄d P5(u).

136 Oxford [72] defines the word passion as follows: strong and barely controllable
emotion; a state or outburst of strong emotion; intense sexual love; an intense desire
or enthusiasm for something; a thing arousing enthusiasm.
137 Regardless of these considerations, any of the defined quantifiers–and this includes
the classic quantifiers–meet this property. Strict quantifiers lead to more symmetrical
values.
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Then, what is left for us to define is the function that replaces the
commas that join the pairs and triads of passionate states together. It
is once again clear that this function is I, A, C and that it has an inter-
mediate value between conjunction and disjunction: it is yet another
penetration function.

We must specify the use of the word “passion” before we go any
further. It is clear that, aside from the human passions that refer to love,
there are other human passions that have nothing to do with it. Page
193 offers other cases which are possibly contrary to love. Dialectic
lattices give us tools for analyzing this situation. If we consider, for
example, the cases

I(u) = u is a religious fanatic

J(u) = u is out of his mind

There is no doubt that there are many ways of being a religious fanatic
or being out of one’s mind. The different religions, current or past, dis-
play various examples of this.138 Psychiatry shows very different possi-
ble states of behavioral anomalies ranging from autistic to serial killer,
as examples of the second case.

As we have already proposed, these cases of human passions are, to
a great extent, contrary to the passions aroused by love. From a dialec-
tic standpoint, we must consider that they acquire opposite dialectic
values. In a schematic manner, we might establish the following asso-
ciation within lattice 3Dn:

• loving passions acquire values in the interval (a, p,A),

• religious passions acquire values in the interval (b, q, B),

• behavioral anomalies acquire values in the interval (c, r, C).

and we could go on with other opposing passions. It seems clear that
each group of human passions opposes all the other groups of passions,
but we have no difficulty in assigning logical values to them.

138 Without being a comprehensive list, there are Christian ascetics, Cathars or Tem-
plars in Christianity, Dervishes or Muslim martyrs in Islam, the fighters of the Flower
War between the Aztecs and many others.
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Now, the definition of love acquires a very simple and direct formal
expression. According to the expression defined in page 192, we have
that:

F (x) = P1(x) ∗̄d P2(x) ∗̄d P3(x) ∗̄d P4(x) ∗̄d P5(x) ∗̄d · · ·

which can also be stated, if we use the notation P (i, x) = Pi(x), as

F (x) = ¯d
i P (i, x).

The semantics and the use of the strict dialectic quantifier are thus ex-
plained and by extension, of all the defined dialectic quantifiers.
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Introduction to logical paradoxes

Paradoxes are usually one of the issues that pose the most problems to
logicians. Every paradox holds a new truth within itself. Far from being
an obstacle to a theory, it constitutes a source of new ideas–such is the
creative power of contradiction. This way of regarding contradiction
is, in essence, dialectic. Many authors have professed their admiration
for paradoxes. For instance, W.K. Chesterton could not think if not in
paradoxical terms. Wilde would rightly point out:

Well, the way of paradoxes is the way of truth. To test re-
ality we must see it on the tight rope. When the verities
become acrobats, we can judge them.[96]

In binary logic, paradoxes can be sorted into two major types: para-
doxes originating from propositional equations, and paradoxes stem-
ming from functional equations. Their common background features
an introduction that is within acceptable logical limits but leads to a
contradiction. Classical binary logic can withstand anything but a con-
tradiction, which leads to a problem. In dialectic logic, contradictions
are not an issue.

Logical paradoxes are ruthless resolved by logicians: they state that
the operational procedures leading to the formulation of contradictory
equations are simply not right. There is usually much insistence on the
notion of a meta level and the impossibility that logic may have a say
on logic. The surgical solution of removing all nuisances prevents us
from mining the richness contained within paradoxes.

In this chapter, we will consider some well-known paradoxes and
only comment on others, without further study.
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The hanging or beheading paradox

A classic example of a paradox, whose origins are lost among medieval
stories, is the problem of the man who has been sentenced to death, see
[12, II, li]. It states that a man who has been punished with death is
given a choice as to the way he wishes to die, with the caveat that, if he
lies, he will be hanged and if he tells the truth, he will be beheaded. As
it is not difficult to imagine, a clever convict will state that he will hang.
Let us assume that we make the following propositional statements:

x is the statement made by the convict

a the convict dies from beheading if he tells the truth

b the convict dies from hanging if he does not tell the
truth

V is the set of truthful statements

The convict has two choices:

(x ∈ V )⇒ a if he tells the truth, he dies from beheading

N(x ∈ V )⇒ b if he does not tell the truth, he dies from hanging

With these equations, the statement x = b = N a leads to the
expression:

(N a ∈ V )⇒ a that is N a⇒ a

Thus arriving at a contradiction which is unacceptable to binary
logic, but is perfectly acceptable in dialectic logic. The statement “I
will die from hanging” has thesis value but is not true. As currently
interpreted, there is nothing mandatory or compulsive–while he may
die in one way or the other, the truth is that he will die. Instead, to
classical logic, the paradox stems from the fact that it cannot resolve
how a person on death row may be saved because a set of equations has
no solution and therefore, the method of execution cannot be decided.

The interesting thing is that the paradox can continue. Let us as-
sume that the person on death row we have been referring to is saved
because the logical paradox cannot be resolved. Society–having learnt
from this case–subsequently introduces a new law to prevent this same
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situation from ever happening again.

x is the statement made by the convict

a the convict dies from beheading if he tells the truth

b the convict dies from hanging if he does not tell the truth

c the convict dies from poisoning if he states a paradox

V is the set of truthful statements

P is the set of paradoxical statements

With the new legal framework, the problem has now three social
laws:

(x ∈ V )⇒ a if he tells the truth, he dies from beheading

N(x ∈ V )⇒ b if he does not tell the truth, he dies from hanging

(x ∈ P )⇒ c if he states a paradox, he dies from poisoning

The convict now states that x = c which leads to him not being
able to die from poisoning since he has told the truth and thus fails to
formulate a paradox, therefore a is applicable. But then, he did not tell
the truth, so b applies. At the same time, it is clear that he has stated a
paradox and so c applies, but then we go back to the beginning, where
he has told the truth. The contradiction persists. Even if new laws
are passed, such as “if he states a second-order paradox, he is gunned
down”, the contradiction remains. In summary, dialectic poses no such
contradiction and the obvious occurs: if he has been sentenced to die,
he will die, regardless of the method of execution.

Protagoras’ paradox

A similar case occurs in Protagoras’ paradox, see [85, X]. In this classic
problem, Protagoras has trained a pupil in the art of litigation, under
the condition that he gets paid whenever he wins a case. The paradox
arises when the pupil refuses to pay for his education, which leads to
Protagoras suing him. We then arrive at a case without a solution. Re-
gardless of the result of the trial, one cannot logically conclude whether
the pupil must or must not pay. Let us examine the problem through
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the following propositions:

a Protagoras gets his pay

b The student wins a trial

c Protagoras wins the trial against his pupil

The problem is very rich in statements useful to articulate all legal
quibbles. To Protagoras, the possibilities are the following:

1) b⇒ a contract: if he wins a trial, Protagoras collects money

2) Nb⇒ Na contract: he does not win a trial, he does not collect
money

3) c⇒ a litigation: Protagoras wins and receives his pay

4) c⇒ Nb litigation: Protagoras wins, indirect consequence

5) Nc⇒ Na litigation: Protagoras loses, does not collect money

6) Nc⇒ b litigation: Protagoras loses, indirect consequence

It is easy to convince ourselves that these six equations have no so-
lution within the realm of binary logic. On the other hand, in dialectic
terms, it is a different story. To begin with, 1) and 2) are equivalent due
to MTE. From 4), due to MTE, we have that NNb ⇒ Nc, that is, 7)
b ⇒ Nc, which, combined with 5) due to T, gives us that 8) b ⇒ Na.
From 1) and 8) due to PCE, we have that Nb is a thesis and also b is
a thesis. From 7) and 6) we have that b and Nc are equivalent, then
Nc is a thesis and also c is a thesis. According to this, the problem has
a solution and the three propositions take on dialectic values. Thus,
“common sense” is resolved and we have a solution to the problem: the
three propositions are theses and it follows that Protagoras receive his
payment, whether he wins or loses in court.

Epimenides’ paradox

In its simplest form, Epimenides’ paradox–or the liar’s paradox–displays
the most basic limitation of binary logic. In its classic form, see [83] for
this and other paradoxes, the Cretan Epimenides is said to have stated

all Cretans are liars.
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The paradox stems from the confrontation between this statement and
the implicit statement

the author of the statement is a Cretan.

There have been many other forms of this paradox, with varying
degrees of complexity, but the allegedly original form contains all of
the richness of the problem.

Let us begin with the methodological statement that most logicians
will not accept: nothing can stop a person from imitating Epimenides
by stating a phrase leading to the same paradox. This person’s brain
will not explode upon attempting this allegedly forbidden operation–
nothing happens in our material world. This is where the true problem
lies, that logicians tend to leave out. If the brain and the universe were
purely binary, these statements could not be made, in much the same
way as no one can walk on walls or circumvent the laws of thermo-
dynamics. In different words, what is truly surprising in Epimenides’
paradox is that there is no repugnance, no natural violence, no physical
impossibility in stating it. Any reasonable person–even a professional
logician–can understand the statement:

I lie

despite it encompassing Epimenides’ entire problem. It is simply ab-
surd to assume that this everyday statement could be impossible–people
often lie and they sometimes confess to it. Only a radical, idealistic po-
sition could imagine this statement being banned from the lives of peo-
ple for being unthinkable. To dialectics, Epimenides’ paradox contains
an artificial trick that does not actually occur in real life.

It is not infrequent to say that the paradox arises out of confusion
in the statements’ hierarchies. From the moment a statement judges
the validity of another, we can say that a level has been overcome and
that we have gone from logic to meta-logic. This easy way of inter-
preting a paradox was promoted by Russell to help him escape his own
paradox on classes and was popularized by Tarski to escape from other
paradoxes.
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This way of escaping from paradoxes is erroneous. As we can see
in what follows, Epimenides’ problem–because we cannot continue to
refer to it as a paradox once we know they do not exist–is ultimately not
in the mix of hierarchies but in attempting to find a binary solution to
a non-binary logical problem. In fact [83] had already put forward this
idea, although in a very basic form.

With the purpose of defining the analysis of Epimenides’ problem,
we must accept the following version, which is somewhat more precise:

1) a the following statement is false,

2) b the previous statement is true.

The paradox stems from assuming that statement a is true, given
that, then, bwould be false and from this, then a is not true. Something
similar occurs if we assume that statement a is false. Since statement a
cannot be either true or false, the alleged Epimenides’ paradox occurs.

In a study of dialectics it is natural to state that a has thesis value
different from true and false. The problem can be formulated as: 1)
a ⇒ Nb, 2) b ⇒ a, then, due to T, we have that b ⇒ Nb, then by PC
Nb is a thesis and then b is also one. But let us analyze in more detail
the steps leading to this.

Let us assume that we resort to the brain’s spontaneous logic, with-
out becoming trapped by artificial difficulties. It seems clear that the
statements in Epimenides’ problem can also be formulated as:

a says that statement b is false,

b says that statement a is not false.

So far, we have replaced true by the negation of false, which does
not seem to set off any alarms. Let us consider the propositional func-
tion:

f(x) = statement x is false.

With this function, Epimenides’ problem becomes:

a = f(b) b = Nf(a).

The first statement says: a establishes that b is false. The second
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statement says: b establishes that a is not false. Epimenides’ problem
consists in studying whether these equations have a solution.

The classic solution is denying that the problem bears any signif-
icance. On the one hand, the function f(x) must be a propositional
function, but, on the other, it must be a logical function. This is the
argument of confusion of levels that is usually invoked to escape from
the paradox. But let us take on a wider criterion and move on. We will
accept that f(x) may be a logical function and that it is valid to have a
say on the validity of a statement. In this case, the contradiction con-
tinues as follows. It is quite clear that f(x) can only be one of the two
only logical functions that exist: f(x) = x or f(x) = Nx. It is rea-
sonable to assume that we are referring to the second. If we accept that
the function matches the first, which already evidences an inclination
for the interpretation of the statement “x is false”, we arrive at the final
equation a = Na.

With this interpretation, Epimenides’ problem consists in solving
the system of logical equations:

a = Nb b = NNa.

It is worth noting that we have not assumed that the negation is an
involutory operation. If we were to replace b in the first equation, we
would arrive at a = NNNa. This equation can be solved in a myriad
logical ways. Thus, for example, in Hegelian logic, a can take on any of
the three dialectic values, regardless of the negation considered. Even
in second-order negation logics–which also occurs in some Hegelian
negations–the resulting equation a = Na has a solution. Therefore,
for instance, in the modal logic defined in C3, there is a solution. In
Hegelian logic, in D3, with the negation N = (0 1) there are three
solutions. As surprising as it may seem, there are also solutions in
Boolean logics of order greater than 1, for example, for the negation
N = (0 1): it is clear that in yin-yang dialectics, both yin and yang are
solutions for this negation. To sum up, the only problem that remains
is deciding whether a system of logical equations has a solution within
a certain logical environment, and nothing else. Even further, the solu-
tions we have found allow us to translate the result obtained to a direct
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language: Cretans only state strict theses, never truths or falsehoods and
this is the wonderful result that the alleged Epimenides’ paradox has ac-
quired. It is worth noting that if we wish to extract the meaning from
the phrase “I lie” by means of a spontaneous attitude, we will arrive at
the simple conclusion that the person making such statement is only
worthy of partial credit. For example, his or her statements bear the
stigma of doubt which is characteristic of modal logic, or the stigma of
temporal validity, which is characteristic of Hegelian logic.

It is interesting to note that there is a very symmetrical way of stat-
ing Epimenides’ problem, by means of three statements:

a statement b is false,

b statement c is false,

c statement a is false.

From here on, through an analysis similar to the previous, we have
that amust coincide with its multiple negation. We can continue through
this procedure. As it is simple to understand, whenever we make an
even number of statements, we will have a binary solution and the
paradox will not even take place. Conversely, it suffices with the num-
ber being odd for the logical world to come crumbling down. This
sensitivity to the parity of numbers bears no connection to the hier-
archies of interpretation and meta-statements, but to the existence, or
lack thereof, of solutions in a system of logical equations. It is diffi-
cult to believe that the trivial example of the existence of solutions in
a system may be so central as to shake the very foundations of logic.
Something similar happens in mathematics every time there is a prob-
lem that cannot be resolved, but the secular experience of mathemati-
cians compels them to bravely venture into other numerical areas to
find a solution. These adventures are known to have left deep scars in
the field of mathematics: “irrational” and “imaginary” numbers evi-
dence two clear wounds in the mathematical pride of those who ever
wished to solve two simple quadratic equations. The exact same thing
has happened in logic thanks to Epimenides’ problem.
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Russell’s paradox

In this section, we will study problems with a markedly functional na-
ture. Among these, the so-called Russell’s paradox distinctly stands out.
Due to its importance from a theoretical point of view, this paradox
marks a major focal point in the dialectical understanding of mathe-
matics.

Let us begin our study at the point where the problem usually be-
gins, in the so-called barber paradox. To this end, we will define the
following propositional function:

F (x, y) = x shaves y

This function is defined over the set of men (of a certain town,
just to get a clear picture). Let b be the town barber. When stating the
problem, the barber shaves all those who do not shave themselves. This
condition may be expressed as a truth table:

F (x, x) F (b, x)

x does not shave himself 0 1

x shaves himself 1 0

This table establishes the barber’s double condition. The problem,
thus stated, results in the propositional equation: F (b, x) = NF (x, x).
The paradox stems from applying this equation to the barber himself,
since we would have: F (b, b) = NF (b, b).

In binary logic, this equation does not have a solution. Not all
the functional equations that we may come up with in the spur of the
moment need to have a solution. This result in mathematics has been
long-known. It is easy, then, to understand that the so-called paradox
is nothing more than a problem without a solution, regardless of how
clever and feasible the problem may be. The second aspect to consider
is that in many a logic–for example modal logic–there is a solution for
the problem and it establishes that “the barber shaves the barber” has
thesis value. This solution is not a simple game of variables. Many
definitions have been put aside when formulating the barber problem.
We have all too lightly considered the issue of the number of barbers in
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the region and the absolutely truthful nature of the fact that there may
be people who never shave themselves.

Let us now consider Russell’s paradox, which is very similar to the
barber problem. A class is defined by a property p(x). For each in-
dividual x, we know whether property p(x) is true or false (in the
formulation made by binary logic). We will accept, just as Russell
spontaneously accepted, that x may also be a property. We can then
study if the value of p(p) is true or false. Then, we have the function
F (p) = Np(p) that expresses the property that p does not contain the
property p. We have thus constructed propositional function F , that
comprises classes that do not contain themselves, according to the clas-
sical formulation. Let us now see the alleged paradox. Just as in the case
of the barbers, we have a functional equation which may–eventually–
not have a solution. Russell’s problem occurs when F is the property
that we choose to study. We then arrive at a F (F ) = NF (F ).

As we already know, this equation does not have a solution in bi-
nary logic–although it does in other types of dialectic logics–for in-
stance, the “thesis” value. It is worth wondering if this answer leads to
anything interesting or if it is simply a contrived outlet. Deep down,
the problem lies in the fact that an element x belongs to a class p (value
true), does not belong (value false) or belongs in a dialectic manner
(thesis value). This is the reason why Russell’s result is not contrived–
instead of being an obstacle, it is a clear demonstration that the notion
of class must be extended in a dialectic manner.

Conclusions

The existence of propositional or functional equations without a solu-
tion within a certain logic does not constitute a paradox but a known
mathematical problem. Mathematics have encountered this situation
many times before. From the previous examples, we should not think
that every problem has a solution within a certain dialectic logic. In
propositional logic, every problem can be expressed as a system of
equations of the type:

E1 = v1

· · ·
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Ep = vq

where Ei are logical expressions with a certain number of unknown
propositions and it holds true that v1 = 0, 1. We do not impose any
type of restriction to the problem. In classical logic, to avoid the prob-
lem of reciprocal references, the possibility of writing the equality of
two expressions or the mixing of variables is not accepted. But none
of this keeps systems of logical equations that cannot be resolved from
existing.

The first observation that can be made consists in considering that
all the expressions are of the type Ei = 0 because an equation of the
typeE1 = 1 is equivalent toN E1 = 0. The second observation is that
a system of expressions of which we ask that they be false is equivalent
to:

E1 + · · ·+ Ep = 0.

With these observations, we can then prove that paradoxes can be
formulated in every dialectic lattice and for every negation.

Theorem 72 In every lattice, for every x, y, z and every negation N ,
the expression p(x, y, z) = x+ y + z .Nx+Nz .Ny is a thesis.

Proof. For the expression to be 0, all the summands must be 0 and
from this that the equations: x = 0, y = 0, z.Nx = 0 andNz.Ny = 0
need to hold true. By replacing x, y in the two remaining equations, we
have that z = 0 and Nz = 0 which lack a solution in every lattice, for
every negation. It is then proven that there is no triad of values for
which the expression is worth 0, then, it is a thesis. �

As immediately follows, new variables may be added to the expres-
sion and it would continue to be a thesis–it is enough to add as many
terms of the type w .Nx + Nw .Ny as desired. Conversely, we can
eliminate variables from the expression by assigning 0 values to y, with
which we have that x + z .Nx + Nz and also assigning 0 values to z,
yielding x+Nx which are theses in every lattice and every negation.

As another corollary to this theorem, in every lattice, for every
negation and all logical functions, there are equations or systems of
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equations that do not have a solution. The equation p(x, y, z) = 0 is
an example of this. They are what classical logicians refer to as para-
doxes.

The existence of paradoxes suggests that, in dialectics, there is a
whole new level of complexity under which these problems may be
solved. This will be analyzed in the future.
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Overview

In the first chapters of this book, we have shown that natural human
thought uses logical structures that far exceed binary logic. This is
the reason behind the subsequent development of many multi-valued,
modal logics and other types of logics. In this study, we have proposed
creating a formal structure–lattices, negations and logical functions–
allowing us to formalize all of this rich logical content. This final chap-
ter shows these structures being used in the formal, natural and social
sciences.

Rank-1 lattices, Dn, allow us to understand simple contradictory
statements. Figures 2, 3 and 5 contain examples of these lattices. Di-
alectic values can be interpreted as intermediate values between “true”
and “false”. This is needed to interpret Wilde’s statements on art, cer-
tain love sonnets and most paradoxes. These lattices also enable us
to naturally interpret the notion of becoming of opposites. Nothing
keeps something from becoming its opposite as long as it holds dialec-
tic value. Elements both in Ionia and China presented this property
without breaching any of the rules of thought. Conversely, it is absurd
for a mathematical theorem to be considered false, unless an error in
its demonstration is proven, which would simply show that it has been
false all along.

Rank-2 lattices, 2Dn, help us understand that there are two types of
opposites: synchronic and diachronic opposites. Figure 28 shows a case
of these types of lattices. To begin with, in these lattices, the negation
Ñ0 = (0 1)(aD)(bA) · · · is present, which evidences the existence of
synchronic opposites. One cannot exist without the other. They are
bound by indissoluble pairs: the unity and struggle of opposites. But
there is another negation N0 = (01)(aC d · · · )(AbD · · · ) within the
same lattice, relating diachronic opposites bound by becoming.
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Figure 28: Generic rank-2 lattice.

This shows that, by using different negations, a single lattice–with
the same “more truthful than” relations–can construct either static or
dynamic interpretations of reality. Dialectic logic–just as binary logic–
offers a method of interpretation. In much the same way as knowing
about the rules of reasoning does not automatically generate mathe-
matical knowledge, knowing about the formal rules of dialectic does
not yield results on reality, by itself.

Figure 29: Generic rank-3 lattice.

Having explained this issue, the semantics in rank-3 lattices, 3Dn,
and by extension, those of a higher rank, immediately follow, as Fig-
ure 29 shows. As with 2Dn the two types of opposites–synchronic and
diachronic—exist in this lattice, with the addition of a supplementary
element–element p appears in the figure between a and A, but there
are even more intermediate elements in higher ranks, which are oppo-
site among themselves—allowing us to interpret other concepts from
historic materialism: the classes that stand between those that are op-
posite.

These more complex lattices show that, just like in the case of di-
achronic opposites, there can be more than two synchronic opposites.
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A clear example occurs with flavors. The West identifies four syn-
chronic opposites: sour, bitter, sweet and salty. The East–especially
India–adds a further two: spicy and astringent. The seventh flavor,
umami, is characteristic of fish, seafood and mushrooms and origi-
nated in Japan.

Introduction to dialectics in the formal sciences

The formal sciences are characterized by an axiomatic structure that
acts as the cornerstone of a purely deductive theory. There are as many
formal sciences as there are possible sets of axioms; the only condition
that is asked of axioms is that they do not contradict each other.

The non-contradiction of a set of axioms is far from a trivial matter.
Only in the case of very few axioms can non-contradiction be demon-
strated. The only reliable method for this proof consists in construct-
ing a preferably finite, specific example–through an infinite example we
would enter especially difficult ground–something which is not always
possible or has been particularly accomplished.

At present, we are familiar with several groups of formal sciences:

• Binary logic and dialectic logic;

• Mathematics, which can be sorted into two major branches: dis-
crete mathematics and continuum theory;

• The different geometries;

• Algorithm theory or symbol manipulation theory.

In discrete mathematics, it is fairly simple to find finite examples
that comply with the axioms. Thus, for instance, the axioms in group
theory are not contradictory because there are a large number of finite
examples that fulfill the axioms. Continuum theory appears to be non-
contradictory, but it is not free from some major theoretical difficulties,
a couple of which are presented below. Geometries, based on the work
of David Hilbert [46], are as free from contradiction as the continuum
theory. Symbol manipulation theory—for delving into infinite prob-
lems—is as free from contradiction as natural number theory. It only
appears to be non-contradictory.
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Finally, because they are part of discrete mathematics, binary and
dialectic logic quite simply present finite examples that fulfill the ax-
ioms of the former.

Independently from the lattice and negation being considered, one
can always construct statements that are consistently thesis. This is a
surprising result within the framework of dialectic logic, see Theorem
72.

Contradiction in mathematics

In the formal sciences, contradiction plays a critical role. It is unaccept-
able and is only used as a method of demonstration. For this reason,
we will begin by the principle of contradiction, also referred to as the
principle of explosion.

Its classical Latin formulation, ex contradictione quodlibet (from a
contradiction anything follows), has been well-known since the days of
Scholastic logic.139 In his critique of logicism, Henri Poincaré makes
the following comment:

M. B. Russell arrive à cette conclusion qu’une proposition
fausse quelconque implique toutes les autres propositions vrais
ou fausses. [ . . . ] Il suffit cependant d’avoir corrigé une mau-
vaise thèse de mathématiques, pour reconnaı̂tre combien M.
Russell a vu juste. Le candidat se donne souvent beaucoup
de mal pour trouver la première équation fausse; mais dès
qu’il l’a obtenue, ce n’est plus qu’un jeu pour lui d’accumuler
les résultats les plus surprenants, dont quelques–uns même
peuvent être exacts.140 [79, IV, i]

139 Some authors even suggest that this goes back as far as Aristotle, which is debatable.
From the beginning of the 20th century, when binary logic was formalized, a current
of logicians exploring the scope of this idea constructed what they referred to as para-
consistent logic (logic that is beyond consistency). This name was introduced in 1976
by the Peruvian philosopher Francisco Miró Quesada (1918).
140 B. Russell arrives at the conclusion that any false proposition implies all of the other
propositions, either true or false. [ . . . ] It suffices with having had to grade a bad math-
ematical thesis to acknowledge that Russell’s point of view is accurate. The candidate
strives to find the first false equation. But, as soon as they obtain it, it is a simple game
of accumulating the most surprising results, some of which may also be accurate.
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However, there is reason to think that Poincaré left something im-
portant out. We can better see this through an example. The equation
1 = 3 is clearly one of those “false equations” of which nothing seems to
come out.141 But what if we continue with the “error”? By applying the
arithmetic rules of whole numbers, we have that 0 = 2, or that 4 = 2 =
0 and so on. These “errors” are referred to as binary arithmetic or base-
2 arithmetic–the technical basis used by computers–and mathematics
turns them into solid truths just by making a minor incorporation.
They simply write down 1 ≡ 3 (mod 2). The quodlibet has become
an m-module arithmetic which is indispensable to the study of many
aspects of mathematics. We have already used this arithmetic to define
dialectic lattices in general. This new structure even allows us to define
finite numerical entities that have major implications for various fields
of mathematics and science.

From the point of view of the formal properties, it is possible to
“demonstrate” this peculiar principle of contradiction. An example of
a demonstration can be performed by using the so-called disjunctive
syllogism: if (x+ y) andNx are theses, then y is a thesis. The difficulty
resides in that, in dialectics, the disjunctive syllogism is false. It is very
simple to offer a counterexample: a+0 is a thesis,Na is one as well, but
0 is not a thesis. Another possible “demonstration” is based on MTE:

1) a .Na starting hypothesis

2) a EC in 1)

3) Na EC in 1)

4) Nb hypothesis

5) a reiteration of 2)

6) Nb⇒ a conclusion from 4) and 5)

7) Na⇒ NNb MTE of 6)
141 It is also the statement made by the Christian trinity, put in terms of inventive
mathematical language. Birkhoff [4, XII, 6] cites this anecdote by Russell. Russell is
reputed to have been challenged to prove that the (false) hypothesis 2 + 2 = 5 implied
that he was the Pope. Russell replied as follows: “You admit 2 + 2 = 5; but I can prove
2 + 2 = 4; therefore 5 = 4. Taking away from both sides, we have 3 = 2; taken one more,
2 = 1. But you will admit that I and the Pope are two. Therefore, I and the Pope are
one. q. e. d.”
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8) NNb MP of 3) and 7)

9) b PNN of 7)

10) (a .Na)⇒ b Conclusion from 1) and 9).

This demonstration does not tell us anything new and is formally
flawed. In the case of a negation–such as N0 in 2Dn or 3Dn and pre-
sumably in lattices of greater rank–for an atom a, we have that a ⇒ a
and a ⇒ N1 a given that N1 a = A. If the previous demonstration
were correct, we might deduce that a⇒ b must be a consequence of 2)
and 9). However, the truth table–see Tables 34, 35 or 36– indicates that
this is false. That is, in dialectic logic, we find a counterexample that
shows that the formal demonstration is false.

On the other hand, (a .Na)⇒ b, if the negation is strict, does not
say anything other than that 0 ⇒ x is a thesis. This is true for x =
0, d, 1 because f1 > 0 and because both 0 ⇒ 0 and 0 ⇒ 1 are theses
as well. This point will be analyzed further in all of its complexity,
together with the validity of the CI rule.

The demonstration that no (rational) number yields 2 when squared
failed to destroy mathematics but rather expanded it through the cre-
ation of “irrational” numbers. In much the same way, the impossibility
that the square of a (real) squared number could yield –1 led to the cre-
ation of “imaginary” numbers. The terminology used in mathematics–
both irrational and imaginary–implicitly acknowledges that they stem
from contradictions.

Difficulties with a Hamiltonian operator led Paul Dirac (1902, 1984)
to conceive of the idea of the “antiparticle” that was discovered shortly
after. It also holds on to a name reminiscent of the original contradic-
tion. By the way, it was not the only contradiction that he introduced
in science.142

These examples show that we must be careful when handling the
notion of contradiction, even in exact and formal sciences. In many

142 Another well-known example is Dirac’s δ(x) “function”, something that contra-
vened all the prior definitions of a function. This “function” had already been sug-
gested by Oliver Heaviside (1850, 1925) in 1894 and by Poincaré in 1912. It was sub-
sequently formalized by Laurent Schwartz (1915, 2002) in his theory of distributions.
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cases, far from being an obstacle, contradiction has been the source of
generation of new knowledge.

The parallel postulate in geometry

When examining the history of mathematics and science, we can find
examples of the application of the dialectic implication function. Let
us begin by classic Greek geometry. It is clear that the following has
been the sequence of historical events:

1. Towards –500, Thales of Miletus discovered the properties of
congruent triangles.

2. Also around –500, Pythagoras discovered the theorem of the hy-
potenuse of the right triangle.

3. Between –500 and –300, other unidentified mathematicians de-
rived several results linked to the two previous major theorems.

4. Around –350, Aristotle of Megara performed the first formaliza-
tion of deductive reasoning.

5. Around –300, Euclid discovered the notion of axiom and con-
structed a deductive theory of geometry and, by extension, math-
ematics.

6. For 20 centuries, there was doubt about the axiomatic nature of
Euclid’s statement on parallel line segments.

7. In the 19th century, the parallel line segments axiom was proven
to be independent from the remaining classical axioms of geom-
etry.

8. Towards mid-19th century and the beginning of the 20th century–
from Boole to Russell–the theory of logical deduction was for-
malized.

We will analyze this history from the point of view of the logical
validity of the propositions of geometry. Towards –500, the two fun-
damental theorems had relative logical value; while they were based on
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the observation of triangles and their properties, they were poorly sup-
ported. We might say that their logical value was that of a thesis. A fun-
damental shift occurred thanks to Euclid’s work: axioms, propositions
that were assigned the logical value true, were introduced.143 With this
modification, theorems also became statements with “truthful” value,
that is to say, they acquired the same logical value as the axioms that
originated them.

The fact that the parallel segment axiom posed doubt did not change
its logical value, it was also “true”–the only thing was that there was
speculation about it being a theorem. In the 19th century, the issue of
the parallel line was unexpectedly resolved and became a very impor-
tant element from a dialectic point of view. On the one hand, János
Bolyai (1802, 1860) and Nikolai Lobachevsky (1792, 1850) published
two separate geometry treatises that posited the existence of more than
one parallel line. A couple of decades later, Bernhard Riemann (1826,
1866) presented a geometry without parallel lines. From this moment
on, depending on the accepted axiom, three variants of geometry would
coexist.144

The acceptance of different axioms for parallel lines allows us to
build geometries that have the same logical value as the accepted axiom.
The three versions of the axiom are opposites among themselves but
exist simultaneously. This interacts perfectly with Hegel’s D3 lattice.
Therefore, for instance, if “there is no parallel line”, we can accept that
it has thesis value, if “there is a single parallel line”, that it has antithesis
value and if “there is more than one parallel line”, that it has synthesis
value.145 Thus, the scenario for 19th century geometry presents itself
as perfectly coherent. The theorems of elliptic geometry all have value a

143 It is not that axioms are “true” in an epistemological sense, it is just conventional to
accept that they are universally valid, as we will see in what follows.
144 There is at least a fourth variant of geometry, the so-called projective geometry, that
does not have parallel lines and is derived from the study of perspective. This geometry
can be interpreted in terms of Euclidean geometry by accepting the existence of points,
lines or planes to infinity. A coherent geometry was thus obtained, with the peculiarity
that the concepts of point and plane were interchangeable.
145 This allocation of logical values does not correspond to the chronological order of
events, but it is more coherent to say that a single parallel line is the synthesis between
non-existence and multiple existence.
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in D3; those of Euclidean geometry, value b and those of hyperbolic ge-
ometry, value c. These theorems are contradictory among themselves,
but within the framework of dialectic interpretation, they constitute a
single geometry.

With the discovery of non-Euclidean geometries, the parallel line
axiom went on to become a choice–it could be either accepted or not,
as desired. Once it has been accepted with the value “true”, regard-
less of the statement from the three possible cases–absence of parallels,
existence of a single parallel, existence of multiple parallels–, a valid ge-
ometry is constructed which proves to be useful in making sense of the
universe.

Dialectic implication allows us to understand the existence of de-
ductive theories at once contradictory and valid. Non-Euclidean ge-
ometries constitute the paradigmatic case. As has been proposed, the
simultaneous existence of the three (or more, see [77, III]) geome-
tries may be analyzed without difficulties in lattice D3 or higher. Let
us consider Euclidean geometry as a deductive system where its state-
ments only contain the subset of the logical values S1 = (a, 1), a cone
in D3, see Definition 14. We will reserve the values S2 = (b, 1) and
S3 = (c, 1) both cones in D3, for elliptic and hyperbolic geometries.

Further still, in these logical systems, all of the formal properties of
implication–including the CI property of implication–are valid, given
that, for instance, both a . a and a . 1 or 1 . 1 are theses, as well as a and
1. Due to the property PM, the principle of mixture, each one of these
theories is perfectly coherent on the basis of implication, given that di-
alectic values do not mix. Additionally, the properties of the logic of
predicates are also valid since the properties of classic quantifiers are
valid in a cone. In accordance with this, everything happens between
dialectic values, just as if it occurred in binary formal logic. This sit-
uation offers a major semantic clue as to the use of dialectic logic in
science.

The construction of theorems on the basis of axioms–all axioms
are worth 1 with the exception of the parallel-line axiom which can be
either a, b, c as desired (we will choose the value a)– makes theorems
have S1 values–the sum of the angles in a triangle, for instance. The
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logical validity of Euclidean geometry is thus established. Something
similar occurs with elliptic geometry and hyperbolic geometry. Chang-
ing theorems or demonstrations for each theory is not necessary.

Thus, the construction of theorems can go on without ever en-
countering a contradiction. All the theorems from the three geome-
tries are simultaneously valid. By extension, we must conclude that
both a ⇒ b = 0 and a ⇒ c = 0 are contradictions. In this way, each
geometric theory can be developed by applying all the formal rules,
without noticing that some theorems are worth a, b or c and others are
worth 1. This point is crucial as a consequence of the properties of the
implication functions.

The example of the three (or more) geometries acts as a general
model for analyzing the remaining sciences, whether formal, natural
or social. It allows us to see why we are able to accept contradictory
theories without this implying a violation of the formal rules. To this
end, we have made a detailed analysis from a dialectic point of view.

Dialectics in mathematics

Mathematics has not escaped the general problem of geometry. The
development of algebra experienced a similar process. The mathemat-
ical concept of “group” was developed in the 19th century. What was
the connection between group theory and the rest of the “traditional”
mathematics?

As proposed by the Euclidean model, theory is, in and of itself,
axiomatic as well as deductive. However, we cannot say that the axioms
in the theory are “true”. They are actually theses that either apply to the
objects at hand, or not. Some sets of objects are groups and others
are not. The same occurs with all the algebraic structures introduced
from the 19th century onwards. Boole’s algebra and lattice theory are
included among these structures.

Is “traditional” Aristotelian logic, which was formalized around
1900, true? The answer is no–it is just a set of theses that are usually
accepted, but that it is not mandatory for us to accept. The existence
of a logic more powerful than binary logic is the subject of the present
study.
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A similar thing happens with the famous result by Kurt Gödel (1906,
1978), which represents a paradigmatic case in the study of the link of
the formal theories and the dialectic interpretation of thought. This
case is logicians’ most convoluted effort to overcome the limitations
of binary logic in understanding mathematics and the sufficiently rich
formal theories capable of containing arithmetic.

Gödel’s result is one of these special cases in which formal chains
of arguments are put together that lead to a difficult-to-interpret result.
In its original proposition, the procedure is the following, see [29]:

• An arithmetic apparatus is constructed to allow expressing logi-
cal and mathematical statements as numbers.

• The existence of arithmetic functions indicating whether a propo-
sition can be proven is demonstrated.

• A (very complex) proposition is constructed, that we will refer
to as G, whose properties are studied.

• Two propositions are demonstrated: G⇒ ¬G and ¬G⇒ G.

• This leads either to arithmetic being inconsistent or to the exis-
tence of propositions that are non-demonstrable, such as G. This
is the issue that we must prove dialectically.

In binary logic, we can resort to the proposition (¬ p ⇒ p) ⇒ p
which has been selected by Frege as an axiom of logic and is recognized
as the principle of contradiction, PC–it is argued that, on the basis of
this proposition, every proposition is valid. This is not the case with di-
alectic logic. It is clear that if a proposition can take on thesis value and
its negation can then take on antithesis value, there will be no serious
consequences.

Let us then examine Gödel’s problem in dialectic terms. Gödel
proves the two aforementioned propositions by means of deductive
formal chains. Reasoning by the absurd, these two propositions tell
us that both G and the negation of G are, in some way, true, which in-
dicates that there is an intermediate value between “true” and “false”–
what we have referred to as a dialectic value. Ultimately, Gödel’s theory
indicates that in every axiomatic system that is ample enough to contain
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arithmetic, dialectic propositions can be constructed despite only attempt-
ing to fabricate strict truths. In other words, that it is possible to con-
struct arguments that violate the principle of mixture, PM, something
which does no harm at all to dialectic results.

Formally speaking, Gödel’s result cannot be symbolized as 1 ⇒
a, where a is a dialectic value, because this is not possible in dialectic
implication. It can, however, be symbolized as N G ⇒ G, implying
that G = a that is, mathematics allow us to create a non-decidable
statement that can only be interpreted as a dialectic value.

If we were to proceed as was usual in mathematics throughout his-
tory, whenever a contradiction is found, G would be added as a new
arithmetic axiom. However, it is possible to speculate that, applied to
this new situation, Gödel’s own theory would lead to another statement
of the type N G1 ⇒ G1 and so forth.

Gödel’s discovery is not an isolated case in mathematics. There are
other cases not as spectacular as this—and they are not even acknowl-
edged as dialectic problems.

Propositions referencing fairly unknown mathematical problems
pose a similar problem. As an example, let us think of Christian Gol-
bach’s (1690, 1794) conjecture, formulated in 1742–every even number
is the sum of two prime numbers–or the simple affirmation that in the
decimal development of π for instance, the number 8 exists 100 times
in a row. Based on a little known proposition, very interesting specula-
tions can be made which are within the scope of dialectics.

It is worth illustrating these problems through a simple mathemat-
ical example. Let us consider the following classic problem: proving
that an irrational number to the power of another irrational number
can yield a rational result. There is a demonstration–one not accepted
by constructive mathematicians–that falls within the scope of dialectics.
We will consider its propositions:

p: there are two irrational numbers, x, y that meet xy being ratio-
nal.

q: aa is a rational number, where a =
√

2.

For the time being, we will ignore the logical value of the propositions
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p and q. It follows immediately that q ⇒ p is a thesis given that if q
is a thesis, the theorem that we are trying to prove is also a thesis. But
N q ⇒ p is also a thesis, since if aa were irrational, then (aa)a = a2 =
2 and two irrational numbers can also be found under the requested
conditions. From q ⇒ p, N q ⇒ p being theses, it follows that p is a
thesis.

Spontaneous reasoning tells us that: either q holds true and then
p is true, or Nq holds true and p is also true. However, it is not as
simple to deduce this result from the formal rules. A possible argument
would be the following: 1) q ⇒ p; 2) N q ⇒ p; 3) N p ⇒ NN q
by MTE in 2); 4) N p ⇒ q by PDN in 3);146 5) N p ⇒ p by T in
1) and 4); 6) NN p by PC in 5); 7) p by PDN in 6). This reasoning
shows that, from a formal standpoint, it is not necessary to assume that
the alternatives to q are either true or false. It also proves that p is a
thesis in dialectics because it follows the formal rules of implication.
We cannot prove that the theorem is true; rather, than it is a thesis in a
dialectic sense. Deep down, the application of an argument by the rules
yields a result that is weaker than usual in mathematics. In this sense,
constructivist mathematicians are on to something. They are wrong,
however, in disputing the validity of the theorem.

As in the last case, let us consider the conjecture made by Pierre de
Fermat (1607, 1665): there is no solution to the equation xn+yn = zn

for n > 2, where x, y, z are whole numbers. The first demonstration
of this conjecture did not occur until 1994 and was performed by An-
drew Wiles (1953). With an extension of over 150 pages, it delved into
very diverse areas of mathematics. For 358 years, the nature of this con-
jecture was unknown. Even today, in light of its complexity, it is worth
wondering whether a demonstration outside of the scope of the natural
numbers, where it has been proposed, is possible.

These results illustrate the new possibilities for analysis that dialec-
tics have to offer to some of the classic mathematical problems. In other

146 This step is not as immediate according to the formal rules. It goes as follows:
3) N p ⇒ NN q by MTE in 2); 3a) N p as starting hypotheses for a subordinate
reasoning; 3b) N p ⇒ NN q as a copy of 3) in the subordinate reasoning. 3c) NN q
by MP in 3a) and 3b); 3d) q by PDN in 3c); 4) N p ⇒ q by the introduction of the
implication and end of the subordinate scheme.
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words, mathematics demands a logic that is more intricate than binary
logic. It is possible that only dialectics can understand the mathematics
of the present, given the leap of quality that has taken place.147

Dialectics in information science

Information science displays several cases that possibly require dialec-
tic treatment. Without meaning to present an exhaustive list, we will
mention the following:

• Halting’s theorem,

• the double definition of real numbers,

• NP-complete problems.

Alan Turing’s (1912, 1954) Halting theorem establishes the scope
of action of a machine that handles symbols. This theorem is based
on the construction of a contradiction and, therefore, one may obtain
different conclusions when it is subjected to dialectic analysis.

In mathematics, there is a double definition for real numbers. On
the one hand, we have the classical definition made by Richard Dedekind
(1831, 1916), using cuts148 and on the other, the definition used by
Georg Cantor (1845, 1918), as an infinite succession of decimal digits
after the decimal point. The equivalence between these two definitions
is more than a little dubious and a dialectic problem possibly exists
here.

The computational complexity of the algorithms that depend on
a parameter n allows us to sort them into two groups: those where
their calculus complexity increases as a polynomial in n–for example,
calculating the n decimal figures of the square root of an integer–and

147 José Luis Massera [64, 65] showed that the notion of “rigor” in mathematics is one
that has changed throughout history. This is where he supports his entire defense of
the dialectic quality of mathematics. I think the problem goes beyond this idea as
proposed, which is clearly true.
148 Cuts are a classification of rational numbers in two classes. The weak spot of this
definition–evidenced by Turing’s work–is that a precise procedure is necessary–that is,
an algorithm–in order to know whether a number belongs to one class or the other.
This point of view makes Turing’s computable numbers the only actual real numbers.
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problems which are more complex and whose calculus increases in a
Non-Polynomial (NP) manner with n–for instance, finding the opti-
mal path between two points in a network of roads having n intersec-
tions. Known NP problems are equivalent among themselves, but they
have not really been proven to be non-polynomial. A problem leading
to a dialectic proposition may also exist here.

Introduction to dialectics in the natural sciences

The natural sciences are, by their very epistemological nature, experi-
mental.149 At a certain point in their development, these sciences end
up admitting a formulation similar to that of mathematics: a deduc-
tive, essentially quantitative theory is constructed on the basis of a few
principles. This does not change its experimental quality. The analyt-
ical expose is merely a way of presenting the results. At all times, an
experiment or an observation can controvert these theories and call for
a complete revision of the results.

Henri Poincaré, with his unique insight on the philosophy of sci-
ence, would say:

Les Anglais enseignent la mécanique comme une science expé-
rimentale ; sur le continent, on l’expose toujours plus ou
moins comme une science déductive et a priori. Ce sont les
Anglais qui ont raison, cela va sans dire [ . . . ]150 [77, VI]

The double exposure admitted by the natural sciences, in their ad-

149 This must be understood in a broad sense. For example, neither geology nor astron-
omy or history can truly carry out experiments. But they can perform experimental
observations, take measurements, and to a lesser extent, perform some experiments.
Measuring the speed of debris in a landslide or the amount of salt contributed by a
river, sending space probes to take pictures, collect samples or analyze celestial bodies
are–in a way–experiments. The formation of the USSR, cooperatives and other sim-
ilar cases may be considered forms of social or historical experimentation, as in the
past other experiments have taken place, such as, for example, Akhenaten’s religious
reform in pharaonic Egypt. In this sense, history can also be considered (somewhat)
experimental.
150 The British teach mechanics as an experimental science; in continental Europe, it is
more or less presented as a deductive, a priori science. Needless to say, the British are
right [ . . . ].
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vanced state, is proposed here. Beyond Poincaré’s preferences–which
one may certainly agree with–it is worth asking, how do these two ways
of presenting the experimental sciences differ from one another?

The answer is far from trivial and is one of the topics analyzed in
this chapter. As an introduction to the subject, we can resort to New-
ton’s analysis on gravitation. The duality of criteria pointed out by
Poincaré–as occurs with all the sciences that attain training-level–holds
true in this case: the possibility of formulating them in an argumen-
tative manner based on observational or experimental results or the
possibility of formulating them in an axiomatic manner based on a re-
duced set of equations that double as axioms.

Page 166 presents the equation for the experimental argumenta-
tion of gravitation. Conversely, based on three “axioms”–the two laws
of motion, see page 237 (Mov.) and the law of gravitation (G)–the ex-
perimental laws of Galilei, Kepler and the observation of the Flamsteed
comet can be deduced.

In conclusion, Poincaré is right about the fact that there are two
ways of formulating mechanics; he is not so in saying that one of the
formulations is preferable to the other.151 As we will see in what fol-
lows, this situation can be further generalized to all the branches of
science.

Introduction to relationships between physical theories

In [44, IV] Werner Heisenberg (1901, 1976) classified physical theories–
in the state they were in at the middle of the 20th century–into four
different branches:

F1 Newton’s mechanics.

F2 Thermodynamics and statistical mechanics.

F3 Electricity, magnetism, field theory, relativity.

F4 Quantum physics.

151 It is possible for mistrust in formalizations to have been originated in his mistrust in
the formalization of binary logic. If this presentation of dialectics is accurate, Poincaré
was also right about this.
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He then established the following relations of dependence. F1 ⊂
F3 if c–the speed of electromagnetic waves–is infinite, F1 ⊂ F4 if h–
Planck’s constant–is negligible. He fails to establish a relation for F2.
Finally, there is the question of whether a theory F exists–forever re-
ferred to as the “unified theory”–that would comprise all the branches
of physics (and chemistry). This aspiration–further made complex by
the successive discoveries in F4–still has a place in the collective imagi-
nation of physicists.

In order to analyze these problems, we will study the paradigmatic
case of mechanics and the branches of physics associated with it. Me-
chanics, which are preoccupied with matter and its movement, are at
the core of physics and chemistry. For this reason, it constitutes a good
example when analyzing the role of dialectic logic in scientific struc-
tures. It is reasonable to assume that the rest of the sciences, as they be-
come quantitative and allow for deductive formulation, will encounter
similar structural problems.

19th century mechanics

Towards the end of the 17th century, Newton presented mechanics in
an axiomatic manner. He began with two basic definitions and an ap-
pendix:

• Quantitas Materiæ est mensura ejusdem orta ex illius Densitate et
Magnitudine conjunctim.152 [67, 68, I, Definitiones, i].

• Quantitas motus est mensura ejusdem orta ex Velocitate et quanti-
tate Materiæ conjunctim.153 [67, 68, I, Definitiones, ii].

• Tempus absolutum verum et Mathematicum [ . . . ] Spatium ab-
solutum natura sua absq; relatione ad externum quodvis semper
manet similare et inmmobile [ . . . ]154 [67, 68, I, Definitiones,
Scholium].

152 The quantity of matter is its measure, as arising from density and volume conjointly.
153 The quantity of motion is its measure, as arising from the velocity and quantity of
matter conjointly.
154 Absolute, true, and mathematical time, in itself and by its own nature, flows equably
without relation to anything external [ . . . ] Absolute space, by its own nature and
without reference to anything external, remains always similar and immovable [ . . . ]
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There are two laws of movement–Newton formulates three, but the
first is contained in the second–which are:

• Mutationem motus propotionalem esse vi motrici impressæ, et fieri
secundum lineam rectam qua vis illa imprimitur.155 [67, 68, I,
Axiomata sirve leges motus, ii].

• Actioni contrariam semper et æquales esse reactionem: sive corpo-
rum duorum actiones in se mutuo semper esse æquales et in partes
contrarias dirigi. 156 [67, 68, I, Axiomata sive leges motus, iii].157

The following classic statement results from the laws of motion:

d

dt
(m~v) = ~F

allowing us to analyze projectiles, planets and even variable-mass sys-
tems such as spaceships. Based on this famous equation, the 18th and
19th centuries saw a great advancement in the knowledge of the move-
ment of matter (Matt. as the abbreviation) and in a new axiomatic
formulation.

Two new formulations for the theory of motion are constructed in
the 19th century: the equations of Joseph-Louis Lagrange (1736, 1813)
and the equations of William R. Hamilton (1805, 1865). These equa-
tions were of a less general nature than Newton’s statement, but they
were nonetheless decisive to 20th century mechanics.

The exposition of Lagrange’s mechanics is based on the function
L(q, q̇, t) –referred to as Lagrange’s function–where q, q, t are, respec-
tively, the coordinates, the derivatives with regards to time of the co-
ordinates of the material points of a system, and time. The function
complied with the following axioms:158

155 A change in motion is proportional to the motive force impressed and is made in
the direction of the straight line in which that force is impressed.
156 To every action there is always opposed an equal reaction: or the mutual actions of
two bodies upon each other are always equal, and directed to contrary parts.
157 It is hard not to see in the law of action and reaction a dialectic statement of unity
and struggle of opposites, something which confirms the dialectic nature of the Prin-
cipia.
158 There are many formulations of this mechanic. Among them, it is preferable to
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1. If a system is formed by two sub-systems, A,B, with no interac-
tions between themselves, then, Lagrange’s function for the total
system is L = LA + LB .

2. The motion of the system between q1 and qs makes the action
integral

∫ t2
t1
L(q, q̇, t) dt minimal.

3. Lagrange’s function of a system of points interacting among them-
selves is given by L = 1

2

∑
aij(q) q̇i q̇j −U(~r1, ~r2, · · · , t) where

~ri is the position vector for point i.

4. The basic system of reference for mechanics–Galilei’s principle of
relativity–is homogeneous in space and time.159

The essential difference between Newton’s and Lagrange’s mechan-
ics—and other theories derived from these—lies in the independence
of the interaction U with the speeds q̇i. This occurs with friction in
air or in a liquid, for example.160 It also occurs in the case of magnetic
forces.

Another way of writing the motion equations for the systems de-
rived from Lagrange’s equations: Hamilton’s equations. This is impor-
tant to the development of quantum mechanics and can be found in
[51, VII, 40]. In essence, it consists in a change of variables, in which
the generalized speeds q̇ are replaced by the generalized impulses p and
Lagrange’s function is replaced by Hamilton’s H function, defined as:

pi =
∂L

∂q̇
H =

∑
pi q̇i − L.

follow Lev Landau’s exposition in his series on theoretical physics, written together
with Evgeny Lifchitz [51]. This exposition, aside from being axiomatic in nature, has
been authored by a Nobel prize-winner and a materialistic physicist, two conditions
that stand behind its selection.
159 Strictly speaking, this principle was defined by Newton and is described in [67, 68,
I, Definitiones, Scolium].
160 Landau would even say: le problème du movement d’un corps dans un milieu n’est
plus una problème de Mécanique (the problem of the motion of a body in a [material]
medium is not a problem of mechanics) [51, V, 25].
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H is the energy of the system, as can be easily proven. The two canon-
ical equations come as a result of this change of variables:

q̇i =
∂H

∂pi
ṗi = −∂H

∂qi

Figure 30: Argumentative diagram in 19th century mechanics.

The logical relations between the different formulations of mechan-
ics are presented in Figures 30 and 31. In its argumentative form, New-
ton’s mechanics (NM) are based on the laws of motion (Mot.) and the
properties of matter (Matt.). Conversely, Lagrange-Hamilton’s equa-
tions (LH) are based on the existence of conservative forces (Cons. F.)
or those that derive from a potential. They fail to study the general case,
where forces may be dependent on speed or dissipate energy.

Figure 31: Axiomatic diagram in 19th century mechanics.

The logical relations immediately follow. In the fragment of the
lattice in Figure 30, the order relation means a greater logical value or a
greater explicative value. At the same time, the only thing in common
between LH and NM are Newton’s motion equations (Mot.). An ob-
servation follows immediately. It has been depicted–only a fragment of
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a lattice–that both LH and NM are of a higher logical value than Cons.
F., Mot. and Matt. It seems only natural that this is so.

This representation has an immediate dialectic interpretation, for
example in 2Dn. If we were to consider the logical values Cons. F.,
Mot., Matt., LH, NM, 1, then in the cone S1 = (Cons.F., LH, . . . , 1)
Lagrange-Hamilton’s theory can be argued–as in the case of non-Eucli-
dean geometries. Also in the cone S2 = (Mot.,Matt.,NM, . . . , 1)
Newton’s mechanics can be argued on the basis of the “axioms” Cons.
F., Mot. and Matt. The necessary mathematical theorems have logical
value 1 and are accepted as absolute truths. In a dual manner, by revers-
ing the figure,161 the theories become based on the “axioms” LH and
NM and from these, by applying all the logical formalism, the laws of
matter, motion and conservative forces are proven. The ellipsis in the
definition of the cones allows for the possibility of yet-to-be-developed
theories with a higher logical value.

What are the advantages of a dialectic formulation? Several. To
begin with, it establishes a hierarchy in the logical levels of each area
of knowledge. Secondly, by failing to include the value 1 in the lattice
fragments162 it is clear that no theory intends to be absolutely true,
something which leaves the door open to expanding our knowledge
towards higher logical levels, as we will see in what follows.

20th century mechanics

Mechanics underwent two major revolutions in the beginning of the
20th century: relativistic mechanics and quantum mechanics. These
two branches of physics derive from 19th century mechanics, electro-
magnetism and the knowledge of the structure of matter.

Relativistic mechanics originated due to an incompatibility between
relative motion and electromagnetism (EM).163 In James Clerk Max-

161 The reason for considering the reverse lattice can be found, essentially, in the laws
of motion, Mot., which come as a consequence of both LH and NM, two “opposing”
theories.
162 This is not strictly true. Mathematical theorems with value 1 are part of formal
developments, as is universally accepted. In reality, they are implicit in partial lattice
diagrams.
163 Let us consider a homogeneous electric charge distributed according to an indefi-
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well’s (1831, 1879) equations, the speed of electromagnetic waves is a
universal constant–something which was proven experimentally by Ed-
ward Morley (1838, 1923) and Albert Michelson (1852, 1931) in 1887–
against Galilei’s and Newton’s composition of speeds.

Figure 32: Argumentative diagram in 20th century mechanics.

In 1095, Albert Einstein (1879, 1955) [84] proposed a new transfor-
mation equation for relative motion that accounted for the constancy
of the speed of propagation of electromagnetic waves. These equations,
known as restricted relativity (RR) resolved all the issues, see Figure
32.164

In this fundamental work, Einstein offered a new way of interpret-
ing the transformation equations that Hendrik Lorentz (1853, 1928),
George FitzGerald (1851, 1901) and also Henri Poincaré had already
discovered. In 1908, Hermann Minkowski (1864, 1909) interpreted–
as Poincaré had already anticipated–the transformation equations as a
four-dimensional space, with time being the fourth imaginary dimen-
sion (in a mathematical sense), with an Euclidean metric. This did

nite straight line. A resting observer with regards to the line will only detect an electric
field. Aside from the electric field, an observer who is moving at a constant speed par-
allel to the charged line, will also observe a magnetic field, given that the charge–he is
observing while in motion–forms an electric current that creates this field. Ultimately,
Newton’s principle of relativity does not hold true. For this reason, Einstein’s work is
entitled Elektrodynamik bewegter Körper (On the Electrodynamics of Moving Bodies).
164 No direct link between EM and LH appears. Although they are compatible and
can be harmonized between each other, they fail to generate any higher level theories
worthy of mention.
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away with Newton’s idea of absolute space and time, interdependent
between each other.165

Shortly after, in 1916 [84], Einstein would generalize the principle
of relativity and offer a new interpretation for planetary motion (SS),
by means of the so-called general relativity (GR). The basic idea behind
it is that matter curves space and forces bodies to move according to the
minimal trajectory (geodesic): mass determines the curvature of space,
whereas the curvature determines the motion of matter.166 This way of
presenting gravitation resolves the issue of the equivalence between the
inertia of matter and the gravitational pull exercised by it.

Figure 32 shows that Newton’s mechanics (NM), together with the
solar origin of gravitation–as proven by Newton, see page 30–(G), give
way to the Solar System (SS) theory. Electromagnetism (EM) and New-
ton’s mechanics (NM) generate restricted relativity (RR). The motion
of the solar system (SS) and restricted relativity (RR) give way to gen-
eral relativity (GR).

The observation of matter during the 19th century and the begin-
ning of the 20th century–especially Dalton’s, Lavoisier’s and Mendele-
ev’s (DLM) chemistry–yielded a number of new results which ulti-
mately led to quantum mechanics (QM) and subsequently, relativistic
quantum mechanics (RQM). The following is a most certainly incom-
plete list of these:

• Dalton’s Law (1805). Matter is made up of atoms grouped into
molecules that configure different structures and combinations.167

• Dalton’s Law (1805, etc.). An “atomic weight”–mass would be
more accurate–can be associated with each kind of atom, con-
nected to the manner in which molecules are formed. A relative
measure is derived to hydrogen, which is taken as the unit.

165 In this metric, space and time “intermingle”, such as an electric field “intermingles”
with the magnetic field. One cannot but see the unity and struggle of opposites: space-
time, electric field-magnetic field.
166 Once again, we find the existence of two synchronic opposites: matter and the cur-
vature of space. Each one exists because of the other.
167 A result considered by Feynman, at the start of his physics, as an immense achieve-
ment.

242



Dialectics in science

• Mendeleev’s Law (1865–1870). If the different known atoms are
sorted by their atomic weight, one can see there is a certain peri-
odicity in their chemical and physical properties and eventually
some “gaps” are detected.

• Bunsen-Kirchhoff Law (1860, etc.). etc.) To each atom corre-
sponds a spectrum–that is, a discrete set of frequencies–of light
that is issued or absorbed when excited under certain conditions.

• Mendeleev’s Law (1865–1870). All of the “gaps” were filled by
elements which had not yet been discovered.168

• Law of Thomson, Rutherford and others (1896–1914). Particles
smaller than the atom exist. Atoms are a complex structure made
up of these particles.

The structure of the atom was the main topic of study at the begin-
ning of the 20th century. Subatomic particles did not behave as macro-
scopic particles did. The electrons that orbited the atomic nucleus did
not emit any energy and the spectra of energy emitted by the atoms
were not continuous. Thus began a series of discoveries that revealed
various aspects of the structure of matter:

• Planck’s Law (1900). The emissions from a hot body can be ex-
plained by oscillators with discrete energy, in multiples of h f ,
where h es is Planck’s constant, f is the frequency emitted.

• Einstein’s Law (1905). The emission of electrons by the incident
light–the photoelectric effect–is explained by Planck’s law. The
emission was produced if h f ≥ E where h is Planck’s constant,
f is the frequency of the incident photon and E is the energy
necessary to release one electron from the material.

• Electron diffraction (1924–1927). Electrons behave as if they were
waves that comply with the hypothetical matter waves proposed
by Louis de Broglie (1892, 1987).169

168 The case of ekasilicon–currently called germanium–was the first. The series of lan-
thanides, actinides and transuranic elements have been the most recent.
169 It is hard to imagine a physical law that can better respond to the dialectic idea
of unity and struggle of opposites. Wave and particle are, without a doubt, physical
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The confluence of the idea of the periodic table of elements, the
discrete spectra of the atoms and energy behaving in a discrete manner,
led, in 1913, to Niels Bohr’s (1885, 1962) formulation of the atom: elec-
trons can only occupy certain orbits, each one with a specific amount
of energy. The passage of one electron from an orbit with a greater
amount of energy, E2, to one of lesser energy, E1 releases a photon
with energy E2 − E1 = h f . In a way, the process is the reverse of the
photoelectric effect: a photon releases an electron, an electron releases
a photon.

De Broglie’s hypothesis allows us to intuitively explain Bohr’s dis-
crete orbits: a whole number of wavelengths must be able to fit into the
orbit, which means that only certain orbits are allowed to the electrons.
This begins to explain the periodic table of elements.

With these elements, in 1925, Heisenberg published a revolution-
ary work [44].170 Only analyzing observable physical parameters was
proposed: the energy of the electron was observable, the details of the
orbit and its motion were not. The work, then, revolved around ex-
pressions oriented at rebuilding the spectrum of hydrogen, but not at
trying to build a dynamics of the electron. The idea was revolutionary–
but the exposition was quite cryptic, as appointed by [1]– and garnered
importance with the publication of a work by Max Born (1882, 1970)
and Pascual Jordan (1902, 1980) [24]. There, the use of matrix calculus
was introduced in physics and the results proposed by Heisenberg were
put in understandable terms. Additional notes included a fundamen-
tal result for quantum mechanics which would establish a bridge with
Hamilton’s mechanics:

p q − q p =
h

2πi
I

where p and q the matrixes of momentum and position, I is the identity
matrix. In 1926, Wolfgang Pauli (1900, 1958) calculated, by means of
the new formalism, the spectrum of hydrogen, thus formalized Bohr’s
atom and discovered the electron’s spin.

objects whose properties are different and opposed to each other. The hypothesis es-
tablishes that every particle with a momentum p displays an undulatory behavior with
a wavelength of λ = h/p, where h is Planck’s constant.
170 Simultaneously, Paul Dirac, see [18], was working with the same idea as Heisenberg.
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Erwin Schrödinger (1887, 1961), unlike Heisenberg and others, fol-
lowed the path of De Broglie’s matter waves, see [89].

The chief advantages of the present wave–theory are the
following. a. The laws of motion and the quantum condi-
tions are deduced simultaneous from one simple Hamil-
tonian principle. b. The discrepancy hitherto existing in
quantum theory between the frequency of motion and the
frequency of emission disappears in so far as the latter fre-
quencies coincide with the differences of the former. [ . . . ]
c. It seems possible by the new theory to pursue in all de-
tail the so–called “transitions”, which up to date have been
wholly mysterious. d. There are several instances of dis-
agreement between the new theory and the older one as to
the particular values of the energy of frequency levels. In
these cases it is the new theory that is better supported by
experiment. [89, #1]

Schrödinger applied the principle of least action–the Huygens-Fer-
mat principle, which establishes that electromagnetic waves follow a
minimal path–to the matter waves proposed by De Broglie. He then
observed that the resulting equations had a similarity with the Hamil-
tonian operator of classical mechanics.

Take this function [the classical Hamiltonian] to be a ho-
mogeneous quadratic function of the momenta p2x etc.
and of unity and replace therein px, py, pz by
(h/2π)(∂ψ/∂x), (h/2π)(∂ψ/∂y), (h/2π)(∂ψ/∂x), ψ
respectively. There results the integrand of (20) [the con-
dition of least action]. This immediately suggests extend-
ing our variation problem an hereby our wave–equation
(16) to a wholly arbitrary conservative mechanical system.
[89, #7]

From this observation arose the so-called Schrödinger’s equation,
which allowed for the development of the entirety of quantum me-
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chanics:

H ψ(t) =
ih

2π

∂ ψ(t)

∂t

whereH is the Hamiltonian operator in which the classical momentum
px are replaced by the operators (h/2π)(∂ψ/∂x), etc.171

Subsequently, it was proven that Heisenberg’s, Born’s and Jordan’s
formulation was equivalent to that of Schrödinger, see, for example,
[18]. Quantum mechanics (QM) was thus consolidated, see Figure 32.
The undulatory formulation presented the difficulty of interpreting the
physical meaning of the so-called “wave function” ψ. In general, it is
accepted that its normalized module–given that it is a complex variable
function–is the distribution of probabilities at the particle’s position.

The wave function allowed for the definition of what we know as
the principle of uncertainty, as advanced in Heisenberg’s first work. This
principle establishes that it is not possible to precisely know a parti-
cle’s position and impulse. In mathematical terms, it is expressed as
∆x∆px ≥ h/4π where ∆x and ∆px are the typical deviation of the
measures of the position and momentum at coordinate x.172

The interpretation of the wave function led to a philosophical dis-
cussion that can be summarized by Einstein’s famous quote:

Quantum mechanics is certainly imposing. But an inner
voice tells me that it is not yet the real thing. The theory
says a lot, but does not really bring us any closer to the se-
cret of the “old one”. I, at any rate, am convinced that He is
not playing at dice. [Einstein’s letter to Born, 4–dec–1926]

Aside from Einstein’s epistemological objection, there was still a
more serious issue to resolve. Schrödinger’s equations were second-
degree differential equations in space, but they were first-degree in

171 The formalism replaces the momentum by i h/2π∇ where ∇ is the gradient op-
erator and the Hamiltonian operator is H = p2/2m + U , where U is the potential
energy. The total energy is replaced by the operator (ih/2π)(∂/∂t).
172 Two variables whose operators are not commutative between themselves obey to an
equation of indetermination. They are, from a dialectic standpoint, opposing variables
subjected to a quantitative restriction.
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time, contradicting the theory of relativity, in which time and space
were “intertwined” and were two aspects of the same phenomenon.

In 1926, Oskar Klein (1894, 1977) and Walter Gordon (1893, 1939)
proposed an equation that resolved this issue and used Schrödinger’s
technique of extending the classical formalism by means of restricted
relativity. Subsequently, in 1928, Dirac proposed another equation
with additional consequences.173

We will consider Klein-Gordon’s equation as an example of the for-
malism used. In restricted relativity, the total energy of a particle had
the following expression:

E =
√
p2 c2 +m2 c4

where E is the total energy, p is the momentum responsible for ki-
netic energy, m is the mass responsible for the energy at rest and c
is the speed of the electromagnetic waves. Naturally, this equation
that features square roots does not allow for the direct application of
Schrödinger’s formalism. Klein-Gordon’s solution was to square the
entire equation, applying the formalism in order to obtain:(

−
(
ih

2π
∇
)2

+m2 c4

)
ψ =

(
ih

2π

∂

∂t

)2

ψ.

Dirac sought to find a more elaborate way of doing away with the
square root, which led to the introduction of the spin and also antipar-
ticles. This is how relativistic quantum mechanics (RQM) came to be.

The dialectic interpretation of all these theories call for a 3Dn lat-
tice174–or one of higher complexity–in which the following logical val-
ues can be associated: G, NM, EM, LH, LDM, SS, RR, QM, GR, RQM.175

173 Dirac’s argument is the following: “There is no need to make the theory conform
to general relativity, since general relativity is required only when one is dealing with
gravitation, and gravitational forces are quite unimportant in atomic phenomena.”
[18, XI, 66]
174 Strictly speaking, if we wish to include the results from Figure 32, we must work
with the 4Dn lattice. The lowest logical level has only been omitted for purposes of
simplifying the diagram.
175 Due to an abuse of the language, the same symbol is used to refer to a theory and
its corresponding logical value.

247



An Inquiry into Dialectic Logic

Analogously to the previous section, in S1 = (G,SS,RG, . . . , 1)–
a cone in 3Dn, for instance–an argument in favor of gravitation (G),
Newton’s mechanics (NM), electromagnetism (EM) as basic theories,
the solar system (SS) and restricted relativity (RR) as theories of a higher
logical level, and finally, at the highest logical level, general relativity
(GR).176 This does not preclude the existence of a theory of an even
greater logical level, like the much-sought “unified field”. Analogously,
in S2 = (LH,MQ,MQR, . . . , 1) quantum mechanics (QM) and rel-
ativistic quantum mechanics (RQM) can also be argued.

In a more general manner, S0 = (MN, SS, RR, RG, MRQ, . . . , 1)
–a cone in 3Dn, for instance–can be defined, where almost everything
can be made compatible. In much the same way, S′0 = (MM, RR, RG,
MRQ, . . . , 1) can be considered to be made compatible the theory.

As in the previous case–by applying the duality shown by Poincaré–
we can synthesize the diagram and thus build an axiomatic version.
In this case, the axioms are two: general relativity (GR) and statistical
quantum mechanics (SQM). When considering regions foreign to the
subject matter, GR becomes restricted relativity (RR); when consider-
ing small speeds of movement—as compared to c, the speed of electro-
magnetic waves–we obtain Newton’s mechanics (NM), Maxwell’s clas-
sical electromagnetism (ME) and the Newtonian theory of gravitation
(G).

In a similar manner, for small speeds of movement, SQM becomes
quantum mechanics (QM), from which it can be deduced–when Planck’s
constant, h, is disregarded–in Hamilton’s equations and, in consequence,
Lagrange’s as well. QM also explains the existence of the different
chemical elements and the formation of molecules (LDM).

Subsequent studies–when discovering new elementary particles–
increased the complexity of SQM but their consideration is outside of
the scope of this book. The only purpose was that of applying dialectics
to current physics.

176 It is worth noting that general relativity employs the idea that the Sun is responsible
for planetary motion and also use the value of the Cavendish gravitational constant.
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Statistical mechanics

Statistical mechanics were discovered by Ludwig Boltzmann (1844, 1906)
for Newtonian material point systems and later, in the 20th century, it
expanded to quantum particles. The classical example is a gas where
each molecule moves with a certain speed within a closed container,
but collides with the walls of the container or with other molecules.177

We are interested in studying the properties of this balanced system, a
quality which is attained precisely due to the collisions between molecules
or of these with the walls.

An isolated system formed by “many particles”, with a total energy
and a certain number of particles–both constant–has many possible
internal micro-states.178 In its balanced state, all the micro-states are
supposed to be equally probable. The properties of the system that
can be measured are new properties of the entire system and not of its
particles; see Landau’s comment on page 56. The speed or the energy of
each particle cannot be known, but their average values can. Systems of
this nature have new observable properties, the most characteristic of
which is temperature. Based on energy, temperature and other system
parameters, we can measure other variables of interest.

The fundamental concept in statistical mechanics is the so-called
partition function. In a discrete system, where the total energy Ei of
each micro-state, the partition function Z, is defined as:

Z =
∑
i

e−
Ei
k T

where i is the index of each micro-state, k is Boltzmann’s constant and
T is the absolute temperature of the system. In a continuum of micro-
states, the sum becomes an integral. Based on the partition function,
the remaining observable variables for the balanced system are defined.

177 It is worth remembering that although the basic ideas behind statistical mechanics
were developed in the second half of the 19th century, most German physicists did not
believe in the reality of atoms and molecules, such as Ernst Mach, Wilhelm Ostwald or
Max Planck. Planck gives a clear testimony of this attitude. He was one of the founding
fathers of quantum mechanics, despite himself.
178 A micro-state consists in the position and speed or momentum of each one of the
particles. Saying “many particles” means, for example, more than 1020 particles.
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There are three major cases where statistical mechanics are applied:
ideal gases and two complementary–or opposing–cases of elementary
particle systems: bosons and fermions. Fermions are particles that meet
Pauli’s exclusion principle: two particles in the same state cannot exist
in a micro-state. Conversely, bosons fail to meet the principle and any
number of particles may exist in every possible state.

These considerations have given way to three major statistics: clas-
sical Maxwell-Boltzmann (MB) statistics, Bose-Einstein (BE) fermion
statistics and Fermi-Dirac (FD) fermion statistics.

Figure 33: Logical relations in statistical mechanics.

Figure 33 represents the relations between Lagrange-Hamilton (LH)
mechanics, quantum mechanics (QM) and Boltzmann’s (Z) notion of
micro-state and partition function.

The dialectics of social classes

The dialectics of social classes were first established in the Communist
Manifesto.

Freier und Sklave, Patrizier und Plebejer, Baron und Leibeigener,
Zunftbürger und Gesell, kurz, Unterdrücker und Unterdrückte
standen in stetem Gegensatz zueinander [ . . . ] Im alten Rom
haben wir Patrizier, Ritter, Plebejer, Sklaven; im Mittelalter
Feudalherren, Vasallen, Zunftbürger, Gesellen, Leibeigene,
[ . . . ] Aus den Leibeigenen des Mittelalters gingen die Pfahlbürger
der ersten Städte hervor; aus dieser Pfahlbürgerschaft en-
twickelten sich die ersten Elemente der Bourgeoisie.179 [61,
I, 1-6]

179 Freeman and slave, patrician and plebeian, lord and serf, guild-master and journey-
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Social classes may be multiple synchronic opposites. In capital-
ism, we find the following classes: bourgeoisie, proletariat, peasants
and the middle classes.180 They are synchronic opposites. The follow-
ing is the dynamic between them: peasants can become proletariats,
sometimes middle classes; proletariats can become middle classes or
bourgeoisie; the middle classes can go on to be proletariat or bour-
geoisie, rarely peasants; the bourgeoisie can go on to become part of
the middle classes and sometimes the proletariat. We are also refer-
ring to middle classes in plural–a more thorough analysis may also dis-
tinguish between opposing middle classes: intellectuals, liberal profes-
sionals, officials, etc., with differing interests between classes.

Figure 34: Lattice of materialistic history in Europe.

Figure 34 offers a simplified version of the history of Europe.181

The diagram shows the different synchronic opposites–owners and slaves,
noblemen and serfs, bourgeoisie and salaried employees–and also the
becoming of pairs of opposites. It also suggests something which is ac-

man, in a word, oppressor and oppressed, stood in constant opposition to one another
[ . . . ] In ancient Rome we have patricians, knights, plebeians, slaves; in the Middle
Ages, feudal lords, vassals, guild-masters, journeymen, apprentices, serfs, [ . . . ] From
the serfs of the Middle Ages sprang the chartered burghers of the earliest towns. From
these burgesses the first elements of the bourgeoisie were developed.
180 In contemporary times, sociologists have dubbed middle class to what is referred in
Spanish as the materialistic estamentos. This happened because the natural languages
did not have–as the Spanish does–an accurate way of designating these. However, low
Latin has the word stamentum to refer to the members of urban commercial corpora-
tions and this is its precise meaning. In other European languages, the Latin word was
not adopted and something derived from the Germanic languages, burg–from which
bourgeoisie comes from, the middle class in medieval cities–was preferred, a term that
first designated the fortresses and then the burgesses.
181 Without a doubt, the case with the most stages: slavery, feudalism and capitalism.
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cepted but also controversial:182 that the free middle classes will give
way to the new dominant classes.183 It also suggests that the free mid-
dle classes of capitalism will be in charge of building a new society or
become the end of history.184

The importance of the middle classes is evident in the existence of
political movements aimed at transferring social power to the domi-
nant and the dominated classes, at the expense of eliminating the mid-
dle classes. These movements go by very different names and range
from the authoritarianism of fascism, which is willing to achieve this
through the use of force, to populisms in the other end, that wish to
do this by way of legislation, distribution and a shrunken state power.
The movements that have intended to destroy the middle classes have
systematically failed and, since they eliminate the classes which are ac-
tually revolutionary, the middle classes, they are politically retrograde
movements that stand in the opposite end of the material becoming of
history.

It is unknown whether the dialectic process will ends with the de-
struction of capitalism. This is why the diagram poses questions about
the future.

One thing to consider is, what does the order relation presented in
the lattice mean when applied to social classes? It is clear that the no-
tions of “true” or “false”, in a logical sense, do not apply to social classes.
However, the order relation does apply and there are at least two ways
of interpreting it. One way is for ≥ to make reference to the popula-
tion quantity in the class. In this situation, 0 would mean an empty set
and 1, the total of human society. In this way, greater quantities corre-
spond to the dominated classes–which are always the majority in terms

182 This dialectic contradiction houses the major discussion of historic materialism and
the varied “revisionisms’ that took place in Marx’s doctrine. These topics are out of
the scope of this investigation.
183 In rank-4 lattices, two middle classes can be distinguished that generate the new
dominant and dominated classes, but the central class of free people does not exist.
The central tier reappears in rank 5. These properties alternate between the even and
odd ranks of the lattices considered.
184 This statement contradicts the thesis of the Communist Manifesto [61] where it
states that salaried workers will be the creators of a new society, contradicting the pre-
vious history. This topic is expanded in [32, 33, 34, 35, 36, 37].
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of population–while the dominant classes would be the minority, Fig-
ure 27. But the opposite can also occur, as has been shown in Figure 34.
In this case, ≥ measures wealth or power within a society, a parameter
which is the inverse of the number of members. The middle classes, in
both interpretations, lie somewhere in the middle.

These interpretations are quantitative and acceptable, but there is
still a third way of identifying the order relation: by the value created by
human work. In Marxist economy, the theory of value establishes that
work creates a value that is equal for all the human beings that make
up a society. This notion allows for a new definition of social classes.

The dominated classes are those who receive for their work less
than the value created: they are exploited. Conversely, the dominant
classes receive more than the value created–they are exploiters. The
central class is the point where the sign changes and, for their work, its
members receive the value that is effectively created. In summary, the
order relation is given by the comparison of the retribution received for
the work performed and the value created by this work. The point of
balance–which approximately occurs in free workers–is the average so-
cial value created by work, or the global social average value per person.
In essence, the three interpretations of the order relation are possible
and ultimately equivalent.

These considerations and examples show that the main problem
in applying dialectics to reality lies in determining the necessary lattice
and the allocation of logical values to the actual statements considered.

The formalism of historical materialism

A parallel between Figures 14 and 34 can be drawn immediately, allow-
ing us to formalize the social classes present in the Manifesto:

Figure 34 Figure 14

Roman owners E

Roman slaves a

Roman middle class p

Feudal noblemen A

Feudal serfs b
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Feudal middle class q

Capitalist bourgeoisie B

Capitalist salaried workers c

Capitalist middle class r

Class contradictions are expressed by means of the negationNn−1:
E = Nn−1 a, A = Nn−1 b, B = Nn−1 c. The rotation of the central
elements–for instance in 3D5, see Figure 14–is expressed by means of
the negation N0: p → q, q → r which allows us to interpret the suc-
cession of modes of reproduction when the equations of penetration of
opposites are introduced, see Theorem 52.

Let us now consider the strict penetration of the pair a ∗̄E = p, the
proposition p → q, which can be written as a ∗̄E → q, which estab-
lishes that these opposites “generate” or “produce” the central element
q. Also, from b ∗̄A = q we have that p → q, which can be expressed
as p → b ∗̄A establishing that the central element p generates a new
contradiction between classes.185

The major consequence that stems from these results is the existing
difference between the notion of opposite classes–created by the nega-
tion Nn−1–and the becoming of the modes of production–created by
the negation N0–which show that these are two different negations. In
other words, the contradiction between the dominant and the domi-
nated classes is resolved because the middle classes create a new pair
of opposing classes that are different from the original ones. This idea
had already been introduced in [31]. This is one of the most important
results of the formalization of dialectics.

Another result consists in explaining causality by becoming and ac-
cumulation in quantity. Let us consider a 3Dn lattice with a large n. If

185 In the interpretation of historical materialism, the first statement is translated as:
the contradiction between the dominated and the dominant class generates or creates an
intermediate middle class. The second statement establishes that: the intermediate mid-
dle class generates or produces two new, opposing classes. These statements contain two
of the main theses of historical materialism–although they are not accepted by the
Leninist interpretation–and are shown here as formal dialectic statements.
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we use the mathematical notation, we would have:

di ∗̄Di = Ci N0Ci = Ci+1

From these results, we obtain a chain–as large as we want it to be–of
processes of penetration of opposites which become new processes of
the same type, a causal chain which permits, for instance, accumulation
in quantity:

· · · → di ∗̄Di = Ci → Ci+1 = di+1 ∗̄Di+1 = Ci+1 → · · ·

This result applies to all circular accumulation evolutionary pro-
cesses: the evolution of the species, the accumulation of money or
the evolution of a human society.186 The extended–and eventually
infinite–causal cycle is an extension of the finite closed cycle which gen-
erates the negation N0.

Boundary cases

The various ramifications of the natural sciences lead to separate–and
often contradictory–areas of knowledge, as has been shown in previ-
ous sections. This situation, which is unthinkable in scientific terms,
intends to provide a unified vision of the universe. However, from a
dialectic standpoint, nothing keeps “partial interpretations’, contradic-
tory among themselves, from existing. If we reject the notion of an
absolute, true knowledge, and come to terms with the dialectic vision
of reality, we will be faced with an entirely new set of problems.

The different “partial interpretations” imply that there may be a
boundary between them. Many scientists have proposed this as an is-
sue. It is possible that we may owe the first of these suggestions to
Maxwell, who refers to the boundary between mechanics–back then,
Newtonian mechanics, but this would also apply to quantum and rel-
ativistic mechanics–and everything that is encompassed by statistical
mechanics.

Maxwell’s idea consisted in imagining a “demon” that was capable
of observing gas molecules, thus being able to distinguish between fast

186 Put in humorous terms, this is the equation of the dilemma between the chicken
and the egg.
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and slow molecules in order to separate them. A floodgate joins two
containers, A and B and allows the “demon” to permit a fast molecule
coming from A towards the door, to enter container B. A similar thing
would happen, but in reverse, with the slow molecules. This would
cause the gas from container B to have a higher pressure and temper-
ature than container A, thus violating the second principle of thermo-
dynamics.

This case, as with all boundary cases, is an intellectual experiment:
a being and a floodgate cannot coexist and interact with gas molecules.
All the objects are formed by molecules of comparable size. But the
actual possibility is not what is at stake here, but what happens in the
frontier between classical, quantum or relativistic mechanics and sta-
tistical mechanics.

Fortunately, the problem of the boundary between the microscopic
and the macroscopic description of a many-particle system can be ana-
lyzed in a quantitative manner. The number of particles establishes the
properties in a known, precise relation:

[ . . . ] la fluctuation relative de toute grandeur additive f
décroı̂t proportionellement à l’inverse de la racine carré du
nombre de particules du corp macroscopique.187 [52, I, 2]

If we assume that a system formed by a number of particles∼ 1020

has negligible fluctuation, a system with ∼ 1010 has an even greater
fluctuation. The relation between both fluctuations is, according to the
previous, 1010/105 = 105 that is, a hundred thousand times greater
than known thermodynamics. Without a doubt, this “boundary case”
does not fare well with either the microscopic or the macroscopic de-
scription. We are faced with a theory that has an intermediate behavior
between the two, a theory which, for the time being, does not seem to
be of any practical use. An answer to Maxwell’s demon would only
eventually occur within an intermediate theory between the macro-
scopic and the microscopic, one with an intermediate logical value, the
penetration of values, for example, LH * MB from Figure 33.

187 [ . . . ] the relative fluctuation of every additive magnitude f decreases proportion-
ally to the inverse of the square root of the number of particles of the macroscopic
body.
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A second example of a boundary, similar to the previous, appears
in Schrödinger’s “cat”. A container houses a cat, a flask of lethal gas and
a radioactive source whose emission is capable of breaking the flask.
This is a case of a boundary between microscopic and macroscopic
mechanics, between quantum and classical physics. In the quantum
vision, the flask is in an overlapping state between two others: the state
of the intact flask and the state of the broken flask, given that it is pos-
sible that the emission of the radioactive particles may break it. The
question, then, arises: is the cat dead or alive? Perhaps it is right at the
overlapping state between dead and alive?

From a less spectacular point of view, we may ask this question: is
there a specific size of a molecule or microscopic structure in which it
begins to acquire macroscopic properties? We now know that there is
such a thing as a giant molecule: carbon chains the likes of nanotubes,
plastics or DNA. Nanotubes half a meter long can display amazing ma-
terial properties. DNA molecules may be a few centimeters long. It
seems that these giant molecules have at once quantum properties–
such as the bonds between atoms–and classical properties–such as their
dimensions or tensile strength. As in the previous case, the answer
must be sought in an intermediate theory whose logical value is LH *
MQ–see Figure 32.

A third classical example is found in the boundary between classi-
cal and relativistic mechanics. When approaching the speed of light, a
“speed traveler” within a spaceship would experience phenomena re-
lated to the passage of time which are very different from what a nor-
mal traveler would experience. In this case, as the speed of light draws
nearer, the spaceship would experience a change in its macroscopic
physical properties because the crystalline mesh of the ship’s metals,
bound together by forces that propagate at the speed of light, would
begin to change.188 The same thing would occur to the traveler, who is
nothing but a large biochemical machine with molecular bonds similar
to those of metals. Possibly, a theory with logical value NM * RR could

188 Let us assume that travel is taking place at half the speed of light. The relativistic
correction factor is 1/

√
1− v2/c2 ≈ 1.15, then time, forces and other physical mag-

nitudes experience a 15% modification, which is not negligible, for example, when
dealing with material resistance or electronic systems.
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provide an answer for the problem of the traveler; see Figure 32.

A fourth example–taken from real life, but which has never been
formulated–is the case of a “giant land surveyor” taking it upon him-
self to convert the Amazon into a series of privately owned plots of
land. This expert would come to discover that the measurements he
takes soon become contradictory. For example, the sum of the angles
of each triangle in his triangulation would add up to more than 180◦.
He would begin to experience the passage from Euclidean geometry to
elliptical geometry on the surface of the Earth. This “land surveyor”
would find use in a new legislation that would allow an elliptical de-
scription of geometry.

What do all of these examples teach us? We can draw some con-
clusions. The first is that the cases proposed are not real. They cannot
exist since they hold within themselves an insurmountable contradic-
tion. Maxwell’s demon lives in two containers separated by a flood-
gate, but he is able to observe molecules. What material are the con-
tainer, the door and the demon itself made of? If they were made up
of molecules, the entire proposition would be absurd: the container
as well as the door and even the demon would be meshes allowing
molecules to pass through them, not being able to perform as expected.
The same thing happens with Schrödinger’s “cat”: there is confusion
between the scale of the cat and that of the particles that break the
flask of poison. As she approaches the speed of light, the “fast trav-
eler” would encounter many surprises. The material of the spaceship
would cease to be functional–as would her own body–since all electric
actions would undergo changes given that these actions also take place
at the speed of light. To sum up, everything would shift until becom-
ing impossible. The “giant land surveyor’ would experience something
similar. By attempting to triangulate the land, his instruments would
prove to be useless due to the Earth’s curvature. Prior to measuring an
angle, he should create instruments belonging to the realm of elliptical
geometry.

A second conclusion we can draw is that there are no imagined
boundaries. As a phenomenon attempts to cross a boundary, it begins
to change and the contradiction then fades. As the “demon” shrinks
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in size–to become for instance, about the size of the smallest insect–
its neuron count shrinks, as well as its brain power and vision. Much
prior to being able to handle gas molecules one by one, it would cease
to exist as a living being. “Giant” molecules take no notice that they
have abandoned quantum dimensions and those measurable by man.
For the “speed traveler”, the spaceship becomes a sort of cloud as it
comes close to the speed of light; her bodily chemical reactions and
navigation instruments will gradually stop working. She certainly will
not need to worry about other relativistic effects. Something similar
occurs with the “giant land surveyor” as he grows in size–not to men-
tion how hard it will be for his bones to bear his own weight or his
managing to breathe while in the upper layers of the atmosphere.

In summary, so-called boundaries are essentially inaccessible, as are
the speed of light or an absolute zero. Regardless of this, the existence
of the intermediate theories outlined in the various examples is still a
possibility.

Science and dialectics

The dialectic logic that has been formalized in this book, as we have
shown, can be applied anywhere from mathematics to the social and
natural sciences. It is an activity that we humans have spontaneously
performed at least for as long as written records exist. It is a common
element of daily life, the arts or humor.

The formalization of dialectics is an extension of Boole, Frege or
Russell’s binary logic. As such, it introduces new operations: the pen-
etration of opposites, becoming or argumentation. It also extends the
notions of negation and implication.

Dialectics display an essential difference between the formal and
the experimental or social sciences. While the former are construed
as universally valid, the latter are considered as having inferior logical
value. What is more, they can never attain the quality of final truth that
mathematics can.

In a natural manner, dialectic logic explains the existence of con-
tradictory, yet valid and useful, scientific theories. It also accounts for
the progression of science throughout history. Aristotle’s mechanics
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established a certain value of truth. Galileo then improved upon the
theory and Newton complemented it to a degree that seems to attain
absolute truthfulness, an idea that upheld for a few centuries. 20th

century physicists–Einstein, Bohr, de Broglie, Heisenberg, Schrödinger
and others–showed that there was another physics logically more valid
than Newton’s, although not without contradictions. The idea was
born of a possible final unification of the entire physics–something
hard to come to terms with, in dialectic terms.

A major conclusion of this study is that the construction of the ho-
momorphism—the choice of lattice, negation and the association of
statements on reality with the lattice elements—is not a systematic or
mechanic process with precise rules. The application of dialectics to
reality is a truly creative process–the rest is simply the application of
formal rules. Just as in mathematics, the choice of universal truths–
axioms–is the actual creative process. The demonstration of the result-
ing theorems, while a creative process in itself, is much less important
from an epistemological standpoint.
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nicación Social con el pueblo Aymara. Otawa, 1982.

[40] Harrington, John Peabody. The Ethnogeography of the Tewa Indians.
Washington, Government Printing Office, 1916. Electronic text in
archive.org.

[41] Hayes, J. P. A Unified Switching Theory with Applications to VLSI Design.
Proc. IEEE, V. 70, N. 10, p.1140–1151, Oct 1982.

[42] Hegel, G. W. F. Science de la Logique. 3 Vols, Paris, 1981.

[43] Heine, Heinrich. Buch der Lieder – Livre des Chants. Aubier, Paris, 1947,
2 Vols.

[44] Heisenberg, Werner. Physics and Philosophy: the revolution in modern
science. Harper & Brothers, New York, 1962.

[45] Heraclitus. The Complete Fragments. Translation, Commentary and
the Greek text by William Harris, Middlebury College. Electronic text.

[46] Hilbert, David. Fundamentos de la geometŕıa. Publicaciones del Insti-
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